A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 8
Aug.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
S. Zhang, L. Tang, and Y.-J. Liu, “Estimation based adaptive constraint control for a class of coupled string systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1536–1539, Aug. 2022. doi: 10.1109/JAS.2022.105776
Citation: S. Zhang, L. Tang, and Y.-J. Liu, “Estimation based adaptive constraint control for a class of coupled string systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1536–1539, Aug. 2022. doi: 10.1109/JAS.2022.105776

Estimation Based Adaptive Constraint Control for a Class of Coupled String Systems

doi: 10.1109/JAS.2022.105776
More Information
  • loading
  • [1]
    Z. H. Qu, “An iterative learning algorithm for boundary control of a stretched moving string,” Automatica, vol. 38, no. 5, pp. 821–827, May 2002. doi: 10.1016/S0005-1098(01)00266-7
    [2]
    W. He, H. Qin, and J. K. Liu, “Modelling and vibration control for a flexible string system in three-dimensional space,” IET Control Theory &Applications, vol. 9, no. 16, pp. 2387–2394, Oct. 2015.
    [3]
    M. Ye, D. Li, Q. L. Han, and L. Ding, “Distributed Nash equilibrium seeking for general networked games with bounded disturbances,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 1–12, Jan. 2022. doi: 10.1109/JAS.2021.1004269
    [4]
    G. Jin and M. C. Deng, “Operator-based robust nonlinear free vibration control of a flexible plate with unknown input nonlinearity,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 442–450, Mar. 2020. doi: 10.1109/JAS.2020.1003042
    [5]
    Z. Qu, “Robust and adaptive boundary control of a stretched string on a moving transporter,” IEEE Trans. Autom. Control, vol. 46, no. 3, pp. 470–476, Mar. 2001. doi: 10.1109/9.911426
    [6]
    K. J. Yang, K. S. Hong, and F. Matsuno, “Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension,” J. Sound Vibrat., vol. 273, no. 4−5, pp. 1007–1029, Jun. 2004. doi: 10.1016/S0022-460X(03)00519-4
    [7]
    W. He and S. S. Ge, “Robust adaptive boundary control of a vibrating string under unknown time-varying disturbance,” IEEE Trans. Control Syst. Technol., vol. 20, no. 1, pp. 48–58, Jan. 2012.
    [8]
    J. K. Liu and W. He, “Distributed parameter modeling and boundary control of flexible manipulators,” Springer, 2018.
    [9]
    W. He and J. K. Liu, “Active vibration control and stability analysis of flexible beam systems,” London, UK: Springer-Verlag, 2019.
    [10]
    Y. H. Song, W. He, X. Y. He, and Z. J. Han, “Vibration control of a high-rise building structure: Theory and experiment,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 866–875, Apr. 2021. doi: 10.1109/JAS.2021.1003937
    [11]
    M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, Philadelphia, USA: SIAM, 2008.
    [12]
    P. Ioannou and J. Sun, Robust Adaptive Control, Eaglewood Cliffs, USA: Prentice-Hall, 1996.
    [13]
    W. Guo and B. Z. Guo, “Parameter estimation and non-collocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance,” IEEE Trans. Autom. Control, vol. 58, no. 7, pp. 1631–1643, Jul. 2013. doi: 10.1109/TAC.2013.2239003
    [14]
    M. Szczesiak and H. I. Basturk, “Adaptive boundary control for wave PDEs with unknown in-domain/boundary disturbances and system parameter,” Automatica, vol. 120, p. 109115, Oct. 2020.
    [15]
    Z. J. Zhao and Z. J. Liu, “Finite-time convergence disturbance rejection control for a flexible Timoshenko manipulator,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 157–168, Jan. 2021. doi: 10.1109/JAS.2020.1003378
    [16]
    W. He, S. Zhang, and S. S. Ge, “Adaptive boundary control of a nonlinear flexible string system,” IEEE Trans. Control Syst. Technol., vol. 22, no. 3, pp. 1088–1093, May 2014. doi: 10.1109/TCST.2013.2278279
    [17]
    M. Krstic and A. Smyshlyaev, “Adaptive boundary control for unstable parabolic PDEs−Part I: Lyapunov design,” IEEE Trans. Autom. Control, vol. 53, no. 7, pp. 1575–1591, Aug. 2008. doi: 10.1109/TAC.2008.927798
    [18]
    L. Liu, T. T. Gao, Y. J. Liu, S. C. Tong, C. L. Chen, and L. Ma, “Time-varying IBLFs-based adaptive control of uncertain nonlinear systems with full state constraints,” Automatica, vol. 129, p.109595, Jul. 2021.
    [19]
    Z. J. Zhao, Y. Liu, F. Guo, and Y. Fu, “Vibration control and boundary tension constraint of an axially moving string system,” Nonlinear Dyn., vol. 89, no. 4, pp. 2431–2440, Jun. 2017. doi: 10.1007/s11071-017-3595-x
    [20]
    Y. J. Liu and S. C. Tong, “Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems,” Automatica, vol. 76, pp. 143–152, Feb. 2017. doi: 10.1016/j.automatica.2016.10.011
    [21]
    W. He and S. S. Ge, “Cooperative control of a nonuniform gantry crane with constrained tension,” Automatica, vol. 6, pp. 146–154, Apr. 2016.
    [22]
    W. He, C. Sun, and S. S. Ge, “Top tension control of a flexible marine riser by using integral-barrier Lyapunov function,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 2, pp. 497–505, Apr. 2015. doi: 10.1109/TMECH.2014.2331713
    [23]
    H. Benaroya, Mechanical Vibration, Analysis, Uncertainties and Control, New York, USA: Marcel Dekker, 2004.
    [24]
    M. S. Queiroz, D. M. Dawson, S. P. Nagarkatti, and F. Zhang, Lyapunov Based Control of Mechanical Systems, Boston, USA: Birkhauser, 2000.
  • JAS-2022-0405-supp.pdf

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (68) PDF downloads(29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return