Citation: | X. Wang, Q. Kang, M. C. Zhou, Q. Deng, Z. Fan, and H. Liu, “Knowledge classification-assisted evolutionary multitasking for two-task multiobjective optimization problems,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2024.125070 |
[1] |
Z. Lv, L. Wang, Z. Han, J. Zhao, and W. Wang, “Surrogate-assisted particle swarm optimization algorithm with pareto active learning for expensive multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 838–849, May. 2019. doi: 10.1109/JAS.2019.1911450
|
[2] |
L. Zhang, Q. Kang, Q. Deng, L. Xu, and Q. Wu, “A Line complex-based evolutionary algorithm for many-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1150–1167, May. 2023. doi: 10.1109/JAS.2023.123495
|
[3] |
Q. Kang, X. Y. Song, M. C. Zhou, and L. Li, “A collaborative resource allocation strategy for decomposition-based multi-objective evolutionary algorithms,” IEEE Trans. Syst. , Man, and Cybern. Syst., vol. 49, no. 12, pp. 2416–2423, Dec. 2019. doi: 10.1109/TSMC.2018.2818175
|
[4] |
Q. Deng, Q. Kang, L. Zhang, M. Zhou, and J. An, “Objective space-based population generation to accelerate evolutionary algorithms for large-scale many-objective optimization,” IEEE Trans. Evol. Comput., vol. 27, no. 2, pp. 326–340, Apr. 2023. doi: 10.1109/TEVC.2022.3166815
|
[5] |
L. Zhang, K. Wang, L. Xu, W. Sheng, and Q. Kang, “Evolving ensembles using multi-objective genetic programming for imbalanced classification,” Knowledge-based Systems, vol. 255, pp. 1–17, Nov. 2022.
|
[6] |
Y. Wang, S. Gao, M. Zhou, and Y. Yu, “A multi-layered gravitational search algorithm for function optimization and real-world problems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 94–109, Jan. 2021. doi: 10.1109/JAS.2020.1003462
|
[7] |
Q. Yang, W. -N. Chen, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “A level-based learning swarm optimizer for large-scale optimization,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 578–594, Aug. 2018.
|
[8] |
Y. Fu, M. Zhou, X. Guo and L. Qi, “Scheduling dual-objective stochastic hybrid flow shop with deteriorating jobs via bi-population evolutionary algorithm,” IEEE Trans. Syst. , Man, and Cybern. Syst., vol. 50, no. 12, pp. 5037–5048, Dec. 2020. doi: 10.1109/TSMC.2019.2907575
|
[9] |
C. Liu, J. Wang, M. Zhou and T. Zhou, “Intelligent optimization approach to cell formation and product scheduling for multifactory cellular manufacturing systems considering supply chain and operational error,” IEEE Trans. Syst. , Man, and Cybern. Syst., vol. 53, no. 8, pp. 4649–4660, Aug. 2023. doi: 10.1109/TSMC.2023.3253471
|
[10] |
M. Zhou, Y. Qiao, B. Liu, B. Vogel-Heuser and H. Kim, “Machine learning for Industry 4.0,” IEEE Robotics & Automation Magazine, vol. 30, no. 2, pp. 8–9, Jun. 2023.
|
[11] |
X. Guo, M. Zhou, A. Abusorrah, F. Alsokhiry, and K. Sedraoui, “Disassembly sequence planning: A survey,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1308–1324, Jul. 2021. doi: 10.1109/JAS.2020.1003515
|
[12] |
Y. Xiang, Y. Zhou, M. Li, and Z. Chen, “A vector angle-based evolutionary algorithm for unconstrained many-objective problems,” IEEE Trans. Evol. Comput., vol. 21, no. 1, pp. 131–152, Feb. 2017. doi: 10.1109/TEVC.2016.2587808
|
[13] |
K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 577–601, Aug. 2014. doi: 10.1109/TEVC.2013.2281535
|
[14] |
A. Gupta, Y. -S. Ong, and L. Feng, “Multifactorial evolution: Toward evolutionary multitasking,” IEEE Trans. Evol. Comput. , vol. 20, no. 3, pp. 343–357, Jun. 2016.
|
[15] |
Z. Chen, Y. Zhou, X. He, and J. Zhang, “Learning task relationships in evolutionary multitasking for multiobjective continuous optimization,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 5278–5289, Jun. 2022. doi: 10.1109/TCYB.2020.3029176
|
[16] |
M.-Y. Cheng, A. Gupta, Y.-S. Ong, and Z.-W. Ni, “Coevolutionary multitasking for concurrent global optimization: With case studies in complex engineering design,” Eng. Appl. Artif. Intell., vol. 64, no. 3, pp. 13–24, 2017.
|
[17] |
J. Yi, J. Bai, H. He, W. Zhou, and L. Yao, “A multifactorial evolutionary algorithm for multitasking under interval uncertainties,” IEEE Trans. Evol. Comput., vol. 24, no. 5, pp. 908–922, Oct. 2020. doi: 10.1109/TEVC.2020.2975381
|
[18] |
X. Wang, Q. Kang, M. Zhou, S. Yao, and A. Abusorrah, “Domain adaptation multitask optimization,” IEEE Trans. Cybern., vol. 53, no. 7, pp. 4567–4578, Jul. 2023. doi: 10.1109/TCYB.2022.3222101
|
[19] |
K. K. Bali, A. Gupta, L. Feng, Y. S. Ong, and T. P. Siew, “Linearized domain adaptation in evolutionary multitasking,” in Proc. IEEE Congr. Evol. Comput., Spain, 2017, pp. 1295–1302.
|
[20] |
Z. Tang, M. Gong, Y. Wu, et. al., “Regularized evolutionary multitask optimization: Learning to intertask transfer in aligned subspace,” IEEE Trans. Evol. Comput. , vol. 25, no. 2, pp. 262–276, Apr. 2021.
|
[21] |
H. Han, W. Lu, L. Zhang, and J. Qiao, “Adaptive gradient multiobjective particle swarm optimization,” IEEE Trans. Cybern., vol. 48, no. 11, pp. 3067–3079, Nov. 2018. doi: 10.1109/TCYB.2017.2756874
|
[22] |
S. Yao, Q. Kang, M. Zhou, M. Rawa, and A. Albeshri, “Discriminative manifold distribution alignment for domain adaptation,” IEEE Trans. Syst. , Man, Cybern. , Syst., vol. 53, no. 2, pp. 1183–1197, Feb. 2023. doi: 10.1109/TSMC.2022.3195239
|
[23] |
S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via transfer component analysis,” IEEE Trans. Neural. Netw., vol. 22, no. 2, pp. 199–210, Feb. 2011. doi: 10.1109/TNN.2010.2091281
|
[24] |
A. Gupta, Y.-S. Ong, L. Feng, and K. C. Tan, “Multiobjective multifactorial optimization in evolutionary multitasking,” IEEE Trans. Cybern. , vol. 47, no. 7, pp. 1652–1665, Jul. 2017.
|
[25] |
K. K. Bali, Y.-S. Ong, A. Gupta, and P. S. Tan, “Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-II,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 69–83, Feb. 2020.
|
[26] |
K. K. Bali, A. Gupta, Y.-S. Ong, and P. S. Tan, “Cognizant multitasking in multiobjective multifactorial evolution: MO-MFEA-II,” IEEE Trans. Cybern. , vol. 51, no. 4, pp. 1784–1796, Apr. 2021.
|
[27] |
Z. Liang et al., “Multiobjective evolutionary multitasking with two-stage adaptive knowledge transfer based on population distribution,” IEEE Trans. Syst. , Man, Cybern. , Syst., vol. 52, no. 7, pp. 4457–4469, Jul. 2022. doi: 10.1109/TSMC.2021.3096220
|
[28] |
C. Yang, J. Ding, K. C. Tan, and Y. Jin, “Two-stage assortative mating for multiobjective multifactorial evolutionary optimization,” in Proc. IEEE Annu. Conf. Decis. Control, Dec. 2017, pp. 76–81.
|
[29] |
Z. Liang, Y. Zhu, X. Wang, Z. Li, and Z. Zhu, “Evolutionary multitasking for multi-objective optimization based on generative strategies,” IEEE Trans. Evol. Comput., vol. 27, no. 4, pp. 1042–1056, Aug. 2023. doi: 10.1109/TEVC.2022.3189029
|
[30] |
K. Qiao, J. Liang, Z. Liu, K. Yu, C. Yue, and B. Qu, “Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 10, pp. 1951–1964, Oct. 2023 doi: 10.1109/JAS.2023.123336
|
[31] |
L. Feng et al., “Explicit evolutionary multitasking for combinatorial optimization: A case study on capacitated vehicle routing problem,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3143–3156, Jun. 2021. doi: 10.1109/TCYB.2019.2962865
|
[32] |
J. Lin, H.-L. Liu, B. Xue, M. Zhang, and F. Gu, “Multiobjective multitasking optimization based on incremental learning,” IEEE Trans. Cybern., vol. 24, no. 5, pp. 824–838, Oct. 2020.
|
[33] |
G. Yokoya, H. Xiao, and T. Hatanaka, “Multifactorial optimization using artificial bee colony and its application to car structure design optimization,” in Proc. IEEE Congr. Evol. Comput., 2019, pp. 3404–3409.
|
[34] |
F. Ming, W. Gong, L. Wang, and L. Gao, “Constrained multiobjective optimization via multitasking and knowledge transfer,” IEEE Trans. Evol. Comput., vol. 28, no. 1, pp. 77–89, Feb. 2024. doi: 10.1109/TEVC.2022.3230822
|
[35] |
Y. Feng, L. Feng, S. Kwong, and K. C. Tan, “A multivariation multifactorial evolutionary algorithm for large-scale multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 248–262, Apr. 2022. doi: 10.1109/TEVC.2021.3119933
|
[36] |
X. Ji, Y. Zhang, D. Gong, X. Sun, and Y. Guo, “Multisurrogate-assisted multitasking particle swarm optimization for expensive multimodal problems,” IEEE Trans. Cybern., vol. 53, no. 4, pp. 2516–2530, Apr. 2023. doi: 10.1109/TCYB.2021.3123625
|
[37] |
Y. Jing, L. Hu, W.-S. Ku, and C. Shahabi, “Authentication of k nearest neighbor query on road networks,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 6, pp. 1494–1506, Jun. 2014.
|
[38] |
S. S. Mullick, S. Datta, and S. Das, “Adaptive learning-based k-nearest neighbor classifiers with resilience to class imbalance,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5713–5725, Nov. 2018. doi: 10.1109/TNNLS.2018.2812279
|
[39] |
Q. Kang, S. Y. Yao, M. C. Zhou, K. Zhang, and A. Abusorrah, “Effective visual domain adaptation via generative adversarial distribution matching,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 9, pp. 3919–3929, Sep. 2021. doi: 10.1109/TNNLS.2020.3016180
|
[40] |
S. Yao, Q. Kang, M. Zhou, M. Rawa, and A. Abusorrah, “A survey of transfer learning for machinery diagnostics and prognostics,” Artif. Intell. Rev., pp. 1–52, Aug. 2022. [Online]. Available: https://doi.org/10.1007/s10462-022-10230-4.
|
[41] |
M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature learning with joint distribution adaptation,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 2200–2207.
|
[42] |
M. Long, J. Wang, G. Ding, S. J. Pan, and P. S. Yu, “Adaptation regularization: A general framework for transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 5, pp. 1076–1089, May 2014. doi: 10.1109/TKDE.2013.111
|
[43] |
J. Geng, X. Deng, X. Ma, and W. Jiang, “Transfer learning for SAR image classification via deep joint distribution adaptation networks,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 8, pp. 5377–5392, Aug. 2020. doi: 10.1109/TGRS.2020.2964679
|
[44] |
Z. Liang, H. Dong, C. Liu, W. Liang, and Z. Zhu, “Evolutionary multitasking for multiobjective optimization with subspace alignment and adaptive differential evolution,” IEEE Trans. Cybern., vol. 52, no. 4, pp. 2097–2109, Apr. 2022.
|
[45] |
K. Li, K. Pang, Y.-Z. Song, T. M. Hospedales, T. Xiang, and H. Zhang, “Synergistic instance-level subspace alignment for fine-grained sketch-based image retrieval,” IEEE Trans. Image Process., vol. 26, no. 12, pp. 5908–5921, Dec. 2017.
|
[46] |
X. Chen, F.-K. Gong, G. Li, and H. Ding, “Interference subspace alignment in multiple-multicast networks,” IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 8853–8865, Sep. 2019.
|
[47] |
R. Gui, X. Xu, R. Yang, L. Wang, and F. Pu, “Statistical scattering component-based subspace alignment for unsupervised cross-domain PolSAR image classification,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 7, pp. 5449–5463, Jul. 2021. doi: 10.1109/TGRS.2020.3028906
|
[48] |
S. Gupta, S. Singh, R. Su, S. Gao, and J. C. Bansal, “Multiple elite individual guided piecewise search-based differential evolution,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 135–158, Jan. 2023. doi: 10.1109/JAS.2023.123018
|
[49] |
Y. Yu, S. Gao, M. Zhou, Y. Wang, Z. Lei, T. Zhang, and J. Wang, “Scale-free network-based differential evolution to solve function optimization and parameter estimation of photovoltaic models,” Swarm and Evolutionary Computation, vol. 74, pp. 1–19, Oct. 2022.
|
[50] |
Y. Yu, S. Gao, Y. Wang, and Y. Todo, “Global optimum-based search differential evolution,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 379–394, Mar. 2019. doi: 10.1109/JAS.2019.1911378
|
[51] |
Y. Yuan, Y.-S. Ong, L. Feng, A. K. Qin, A. Gupta, B. Da, Q. Zhang, K. C. Tan, Y. Jin, and H. Ishibuchi, “Evolutionary multitasking for multiobjective continuous optimization: Benchmark problems, performance metrics and baseline results,” Jun. 2017. [Online]. Available: arXiv: 1706.02766.
|
[52] |
H. Li and Q. Zhang, “Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 284–302, Apr. 2009. doi: 10.1109/TEVC.2008.925798
|
[53] |
“Supplementary File” [Online], Available: https://pan.baidu.com/s/1eT0aG4xmJq6CQsrc0OduPg with password KCEM.
|
[54] |
J. Derrac et al., “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput., vol. 1, no. 1, pp. 3–18, Mar. 2011. doi: 10.1016/j.swevo.2011.02.002
|
[55] |
K. Liu, Z. Wei, C. Zhang, Y. Shang, R. Teodorescu, and Q.-L. Han, “Towards long lifetime battery: AI-based manufacturing and management,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1139-1165, Jul. 2022.
|
[56] |
X. Wang, L. Liu, L. Duan, and Q. Liao, “Multi-objective optimization for an industrial grinding and classification process based on PBM and RSM,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 11, pp. 2124–2135, Nov. 2023. doi: 10.1109/JAS.2023.123333
|
[57] |
F. Ming, W. Gong, L. Wang, and Y. Jin, “Constrained multi-objective optimization with deep reinforcement learning assisted operator selection,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 919–931, Apr. 2024. doi: 10.1109/JAS.2023.123687
|
[58] |
Z.-J. Wang, Z.-H. Zhan, S. Kwong, et al., “Adaptive granularity learning distributed particle swarm optimization for large-scale optimization,” IEEE Trans. Cybern. , vol. 51, no. 3, pp. 1175–1188, Mar. 2021.
|
![]() |
![]() |