IEEE/CAA Journal of Automatica Sinica
Citation: | J. Xu, Q. Sun, Q.-L. Han, and Y. Tang, “When embodied AI meets Industry 5.0: Human-centered smart manufacturing,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 485–501, Mar. 2025. doi: 10.1109/JAS.2025.125327 |
[1] |
B. Ding, X. F. Hernández, and N. A. Jané, “Combining lean and agile manufacturing competitive advantages through Industry 4.0 technologies: An integrative approach,” Prod. Plann. Control, vol. 34, no. 5, pp. 442–458, 2023.
|
[2] |
M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi, J. Salvador, D. Schwenk, E. VanderBilt, M. Wallingford, L. Weihs, M. Yatskar, and A. Farhadi, “Robothor: An open simulation-to-real embodied AI platform,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020, pp. 3161–3171.
|
[3] |
C. D. Onal and D. Rus, “Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot,” Bioinspir. Biomim., vol. 8, no. 2, p. 026003, Jun. 2013. doi: 10.1088/1748-3182/8/2/026003
|
[4] |
S. J. Yoo, J. B. Park, and Y. H. Choi, “Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks,” IEEE Trans. Syst. Man Cybern. Part B (Cybern.), vol. 36, no. 6, pp. 1342–1355, Dec. 2006. doi: 10.1109/TSMCB.2006.875869
|
[5] |
M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient and privacy-enhanced federated learning for industrial artificial intelligence,” IEEE Trans. Ind. Inf., vol. 16, no. 10, pp. 6532–6542, Oct. 2020. doi: 10.1109/TII.2019.2945367
|
[6] |
S. Zhu, K. Ota, and M. Dong, “Green AI for IIoT: Energy efficient intelligent edge computing for industrial internet of things,” IEEE Trans. Green Commun. Netw., vol. 6, no. 1, pp. 79–88, Mar. 2022. doi: 10.1109/TGCN.2021.3100622
|
[7] |
W. Xiang, K. Yu, F. Han, L. Fang, D. He, and Q.-L. Han, “Advanced manufacturing in Industry 5.0: A survey of key enabling technologies and future trends,” IEEE Trans. Ind. Inf., vol. 20, no. 2, pp. 1055–1068, Feb. 2024. doi: 10.1109/TII.2023.3274224
|
[8] |
J. Leng, W. Sha, B. Wang, P. Zheng, C. Zhuang, Q. Liu, T. Wuest, D. Mourtzis, and L. Wang, “Industry 5.0: Prospect and retrospect,” J. Manuf. Syst., vol. 65, pp. 279–295, Oct. 2022. doi: 10.1016/j.jmsy.2022.09.017
|
[9] |
F.-Y. Wang, “Plenary sessions plenary talk I: “The origin and goal of future in CPSS: Industries 4.0 and Industries 5.0”,” in Proc. IEEE Int. Conf. Systems, Man and Cybernetics, Bari, Italy, 2019, pp. 1–3.
|
[10] |
O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, and X. Wang, “Internet of things for the future of smart agriculture: A comprehensive survey of emerging technologies,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 718–752, Apr. 2021. doi: 10.1109/JAS.2021.1003925
|
[11] |
M. Zhou, “Editorial: Evolution from AI, IoT and big data analytics to metaverse,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2041–2042, Dec. 2022. doi: 10.1109/JAS.2022.106100
|
[12] |
F.-Y. Wang, “The emergence of intelligent enterprises: From CPS to CPSS,” IEEE Intell. Syst., vol. 25, no. 4, pp. 85–88, Jul.–Aug. 2010. doi: 10.1109/MIS.2010.104
|
[13] |
L. Vlacic, H. Huang, M. Dotoli, Y. Wang, P. A. Ioannou, L. Fan, X. Wang, R. Carli, C. Lv, L. Li, X. Na, Q.-L. Han, and F.-Y. Wang, “Automation 5.0: The key to systems intelligence and Industry 5.0,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 8, pp. 1723–1727, Aug. 2024. doi: 10.1109/JAS.2024.124635
|
[14] |
X. Xu, Y. Q. Lu, B. Vogel-Heuser, and L. Wang, “Industry 4.0 and Industry 5.0—Inception, conception and perception,” J. Manuf. Syst., vol. 61, pp. 530–535, 2021. doi: 10.1016/j.jmsy.2021.10.006
|
[15] |
C. Zhang, Z. Wang, G. Zhou, F. Chang, D. Ma, Y. Jing, W. Cheng, K. Ding, and D. Zhao, “Towards new-generation human-centric smart manufacturing in Industry 5.0: A systematic review,” Adv. Eng. Inf., vol. 57, p. 102121, Aug. 2023. doi: 10.1016/j.aei.2023.102121
|
[16] |
Y. Yang, T. Zhou, K. Li, D. Tao, L. Li, L. Shen, X. He, J. Jiang, and Y. Shi, “Embodied multi-modal agent trained by an LLM from a parallel TextWorld,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, WA, USA, 2024, pp. 26265–26275.
|
[17] |
B. Goertzel and C. Pennachin, Artificial General Intelligence. Berlin, Germany: Springer, 2007.
|
[18] |
S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. R. Narasimhan, and Y. Cao, “ReAct: Synergizing reasoning and acting in language models,” in Proc. 11th Int. Conf. Learning Representations, Kigali, Rwanda, 2023.
|
[19] |
N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao, “Reflexion: Language agents with verbal reinforcement learning,” in Proc. 37th Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2023, pp. 8634–8652.
|
[20] |
J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. H. Chi, Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in large language models,” in Proc. 36th Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2022, pp. 24824–24837.
|
[21] |
T. Schick, J. Dwivedi-Yu, R. Dessí, R. Raileanu, M. Lomeli, E. Hambro, L. Zettlemoyer, N. Cancedda, and T. Scialom, “Toolformer: Language models can teach themselves to use tools,” in Proc. 37th Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2023, pp. 68539–68551.
|
[22] |
S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large language models,” in Proc. 37th Int. Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2023, pp. 517.
|
[23] |
J. Duan, S. Yu, H. L. Tan, H. Zhu, and C. Tan, “A survey of embodied AI: From simulators to research tasks,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 2, pp. 230–244, Apr. 2022. doi: 10.1109/TETCI.2022.3141105
|
[24] |
Y. Song, P. Sun, H. Liu, Z. Li, W. Song, Y. Xiao, and X. Zhou, “Scene-driven multimodal knowledge graph construction for embodied AI,” IEEE Trans. on Knowl. Data Eng., vol. 36, no. 11, pp. 6962–6976, Nov. 2024. doi: 10.1109/TKDE.2024.3399746
|
[25] |
Y. Huo, M. Zhang, G. Liu, H. Lu, Y. Gao, G. Yang, J. Wen, H. Zhang, B. Xu, W. Zheng, Z. Xi, Y. Yang, A. Hu, J. Zhao, R. Li, Y. Zhao, L. Zhang, Y. Song, X. Hong, W. Cui, D. Hou, Y. Li, J. Li, P. Liu, Z. Gong, C. Jin, Y. Sun, S. Chen, Z. Lu, Z. Dou, Q. Jin, Y. Lan, W. X. Zhao, R. Song, and J.-R. Wen, “WenLan: Bridging vision and language by large-scale multi-modal pre-training,” arXiv preprint arXiv: 2103.06561, 2021.
|
[26] |
S. Belkhale, T. Ding, T. Xiao, P. Sermanet, Q. Vuong, J. Tompson, Y. Chebotar, D. Dwibedi, and D. Sadigh, “RT-H: Action hierarchies using language,” in Proc. Robotics: Science and Systems XX, Delft, The Netherlands, 2024.
|
[27] |
X. Li, M. Zhang, Y. Geng, H. Geng, Y. Long, Y. Shen, R. Zhang, J. Liu, and H. Dong, “ManipLLM: Embodied multimodal large language model for object-centric robotic manipulation,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, WA, USA, 2024, pp. 18061–18070.
|
[28] |
H. Zhang, W. Du, J. Shan, Q. Zhou, Y. Du, J. B. Tenenbaum, T. Shu, and C. Gan, “Building cooperative embodied agents modularly with large language models,” in Proc. 12th Int. Conf. Learning Representations, Vienna, Austria, 2024.
|
[29] |
L. Hu, Y. Miao, G. Wu, M. M. Hassan, and I. Humar, “iRobot-factory: An intelligent robot factory based on cognitive manufacturing and edge computing,” Future Gener. Comput. Syst., vol. 90, pp. 569–577, Jan. 2019. doi: 10.1016/j.future.2018.08.006
|
[30] |
Y. Tong, H. Liu, and Z. Zhang, “Advancements in humanoid robots: A comprehensive review and future prospects,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 301–328, Feb. 2024. doi: 10.1109/JAS.2023.124140
|
[31] |
W. Ren, Y. Tang, Q. Sun, C. Zhao, and Q.-L. Han, “Visual semantic segmentation based on few/zero-shot learning: An overview,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1106–1126, May 2024. doi: 10.1109/JAS.2023.123207
|
[32] |
Q. Sun, G. G. Yen, Y. Tang, and C. Zhao, “Learn to adapt for self-supervised monocular depth estimation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 11, pp. 15647–15659, Nov. 2024. doi: 10.1109/TNNLS.2023.3289051
|
[33] |
S. Feng, L. Zeng, J. Liu, Y. Yang, and W. Song, “Multi-UAVs collaborative path planning in the cramped environment,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 529–538, Feb. 2024. doi: 10.1109/JAS.2023.123945
|
[34] |
Q. Sun, J. Fang, W. X. Zheng, and Y. Tang, “Aggressive quadrotor flight using curiosity-driven reinforcement learning,” IEEE Trans. Ind. Electron., vol. 69, no. 12, pp. 13838–13848, Dec. 2022. doi: 10.1109/TIE.2022.3144586
|
[35] |
Y. Tang, C. Zhao, J. Wang, C. Zhang, Q. Sun, W. X. Zheng, W. Du, F. Qian, and J. Kurths, “Perception and navigation in autonomous systems in the era of learning: A survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 12, pp. 9604–9624, Dec. 2023. doi: 10.1109/TNNLS.2022.3167688
|
[36] |
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proc. Conf. North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, USA, 2019, pp. 4171–4186.
|
[37] |
J. Achiam, S. Adler, S. Agarwal, et al., “GPT-4 Technical Report,” arXiv preprint arXiv: 2303.08774, 2024.
|
[38] |
J. Li, D. Li, C. Xiong, and S. Hoi, “BLIP: Bootstrapping language-image pre-training for unified vision-language understanding and generation,” in Proc. 39th Int. Conf. Machine Learning, Baltimore, MD, USA, 2022, pp. 12888–12900.
|
[39] |
J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models,” in Proc. 40th Int. Conf. Machine Learning, Honolulu, HI, USA, 2023, p. 814.
|
[40] |
T. Wu, S. He, J. Liu, S. Sun, K. Liu, Q.-L. Han, and Y. Tang, “A brief overview of ChatGPT: The history, status quo and potential future development,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1122–1136, May 2023. doi: 10.1109/JAS.2023.123618
|
[41] |
Z. Yang, L. Li, K. Lin, J. Wang, C.-C. Lin, Z. Liu, and L. Wang, “The dawn of LMMs: Preliminary explorations with GPT-4V(ision),” arXiv preprint arXiv: 2309.17421, 2023.
|
[42] |
H. Huang, F. Lin, Y. Hu, S. Wang, and Y. Gao, “CoPa: General robotic manipulation through spatial constraints of parts with foundation models,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Abu Dhabi, United Arab Emirates, 2024, pp. 9488–9495.
|
[43] |
Q. Yu, C. Hao, J. Wang, W. Liu, L. Liu, Y. Mu, Y. You, H. Yan, and C. Lu, “ManiPose: A comprehensive benchmark for pose-aware object manipulation in robotics,” arXiv preprint arXiv: 2403.13365, 2024.
|
[44] |
B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid, Q. Vuong, V. Vanhoucke, H. Tran, R. Soricut, A. Singh, J. Singh, P. Sermanet, P. R. Sanketi, G. Salazar, M. S. Ryoo, K. Reymann, K. Rao, K. Pertsch, I. Mordatch, H. Michalewski, Y. Lu, S. Levine, L. Lee, T.-W. E. Lee, I. Leal, Y. Kuang, D. Kalashnikov, R. Julian, N. J. Joshi, A. Irpan, B. Ichter, J. Hsu, A. Herzog, K. Hausman, K. Gopalakrishnan, C. Fu, P. Florence, C. Finn, K. A. Dubey, D. Driess, T. Ding, K. M. Choromanski, X. Chen, Y. Chebotar, J. Carbajal, N. Brown, A. Brohan, M. G. Arenas, and K. Han, “RT-2: Vision-language-action models transfer web knowledge to robotic control,” in Proc. 7th Conf. Robot Learning, Atlanta, GA, USA, 2023, pp. 2165–2183.
|
[45] |
F. Liu, K. Fang, P. Abbeel, and S. Levine, “MOKA: Open-vocabulary robotic manipulation through mark-based visual prompting,” arXiv preprint arXiv: 2403.03174, 2024.
|
[46] |
P. Liu, Y. Orru, J. Vakil, C. Paxton, N. M. M. Shafiullah, and L. Pinto, “OK-Robot: What really matters in integrating open-knowledge models for robotics,” arXiv preprint arXiv: 2401.12202, 2024.
|
[47] |
Y. Qian, X. Zhu, O. Biza, S. Jiang, L. Zhao, H. Huang, Y. Qi, and R. Platt, “ThinkGrasp: A vision-language system for strategic part grasping in clutter,” arXiv preprint arXiv: 2407.11298, 2024.
|
[48] |
C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song, “Diffusion policy: Visuomotor policy learning via action diffusion,” in Proc. Robotics: Science and Systems XIX, Daegu, Korea (South), 2023.
|
[49] |
H. Zhen, X. Qiu, P. Chen, J. Yang, X. Yan, Y. Du, Y. Hong, and C. Gan, “3D-VLA: A 3D vision-language-action generative world model,” in Proc. 41st Int. Conf. Machine Learning, Vienna, Austria, 2024.
|
[50] |
J. Zhang, L. Tang, Y. Song, Q. Meng, H. Qian, J. Shao, W. Song, S. Zhu, and J. Gu, “FLTRNN: Faithful long-horizon task planning for robotics with large language models,” in Proc. IEEE Int. Conf. Robotics and Automation, Yokohama, Japan, 2024, pp. 6680–6686.
|
[51] |
B. Y. Lin, Y. Fu, K. Yang, F. Brahman, S. Huang, C. Bhagavatula, P. Ammanabrolu, Y. Choi, and X. Ren, “SWIFTSAGE: A generative agent with fast and slow thinking for complex interactive tasks,” in Proc. 37th Int. Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2023, pp. 1034.
|
[52] |
K. N. Kumar, I. Essa, and S. Ha, “Graph-based cluttered scene generation and interactive exploration using deep reinforcement learning,” in Proc. Int. Conf. Robotics and Automation, Philadelphia, PA, USA, 2022, pp. 7521–7527.
|
[53] |
M. Zhu, Y. Zhu, J. Li, J. Wen, Z. Xu, Z. Che, C. Shen, Y. Peng, D. Liu, F. Feng, and J. Tang, “Language-conditioned robotic manipulation with fast and slow thinking,” in Proc. IEEE Int. Conf. Robotics and Automation, Yokohama, Japan, 2024, pp. 4333–4339.
|
[54] |
X. Ning, Z. Lin, Z. Zhou, Z. Wang, H. Yang, and Y. Wang, “Skeleton-of-thought: Prompting LLMs for efficient parallel generation,” in Proc. 12th Int. Conf. Learning Representations, Vienna, Austria, 2024.
|
[55] |
G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han, “SmoothQuant: Accurate and efficient post-training quantization for large language models,” in Proc. 40th Int. Conf. Machine Learning, Honolulu, HI, USA, 2023, pp. 1585.
|
[56] |
E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “GPTQ: Accurate post-training quantization for generative pre-trained transformers,” arXiv preprint arXiv: 2210.17323, 2023.
|
[57] |
Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, B. Chen, P. Liang, C. Ré, I. Stoica, and C. Zhang, “FlexGen: High-throughput generative inference of large language models with a single GPU,” in Proc. 40th Int. Conf. Machine Learning, Honolulu, HI, USA, 2023, p. 1288.
|
[58] |
H. Wang, Z. Zhang, and S. Han, “SpAtten: Efficient sparse attention architecture with cascade token and head pruning,” in Proc. IEEE Int. Symp. on High-Performance Computer Architecture, Seoul, Korea (South), 2021, p. 97–110.
|
[59] |
N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The efficient transformer,” in Proc. 8th Int. Conf. Learning Representations, Addis Ababa, Ethiopia, 2020.
|
[60] |
S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer: Self-attention with linear complexity,” arXiv preprint arXiv: 2006.04768, 2020.
|
[61] |
T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and memory-efficient exact attention with IO-awareness,” in Proc. 36th Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2022, pp. 16344–16359.
|
[62] |
T. He, Y. Liu, Y.-S. Ong, X. Wu, and X. Luo, “Polarized message-passing in graph neural networks,” Artif. Intell., vol. 331, p. 104129, Jun. 2024. doi: 10.1016/j.artint.2024.104129
|
[63] |
T. He, Y.-S. Ong, and L. Bai, “Learning conjoint attentions for graph neural nets,” in Proc. 35th Conf. Neural Information Processing Systems, 2021, pp. 2641–2653.
|
[64] |
J. Xu, Y. Cai, D. Liu, and Y. Niu, “Model-free formation control: Multi-input iterative learning super-twisting approach,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 54, no. 5, pp. 2765–2774, May 2024. doi: 10.1109/TSMC.2023.3348793
|
[65] |
J. Xu, Y. Niu, and H.-K. Lam, “Nonperiodic multirate sampled-data fuzzy control of singularly perturbed nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 31, no. 9, pp. 2891–2903, Sept. 2023. doi: 10.1109/TFUZZ.2023.3234116
|
[66] |
J. Xu, C. Cai, Y. Niu, and H.-K. Lam, “Genetic-algorithm-assisted self-scheduled multidelay PIR control: Experiments in a car-like vehicle system,” IEEE Trans. Cybern., vol. 54, no. 1, pp. 39–49, Jan. 2022.
|
[67] |
M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and H. V. Poor, “Distributed learning in wireless networks: Recent progress and future challenges,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3579–3605, Dec. 2021. doi: 10.1109/JSAC.2021.3118346
|
[68] |
J. Xu, Y. Niu, and H.-K. Lam, “Adaptive distributed attitude consensus of a heterogeneous multiagent quadrotor system: Singular perturbation approach,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 6, pp. 9722–9732, Dec. 2023. doi: 10.1109/TAES.2023.3264495
|
[69] |
J. Xu, Y. Niu, and P. Shi, “Adaptive multi-input super twisting control for a quadrotor: Singular perturbation approach,” IEEE Trans. Ind. Electron., vol. 71, no. 5, pp. 5195–5204, May 2024. doi: 10.1109/TIE.2023.3281686
|
[70] |
M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi, “Internet of things: Survey and open issues of MQTT protocol,” in Proc. Int. Conf. Engineering & MIS, Monastir, Tunisia, 2017, pp. 1–6.
|
[71] |
E. Seraj, “Enhancing teamwork in multi-robot systems: Embodied intelligence via model- and data-driven approaches,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, USA, 2023.
|
[72] |
D. Weyns, E. Steegmans, and T. Holvoet, “Towards active perception in situated multi-agent systems,” Appl. Artif. Intell., vol. 18, no. 9-10, pp. 867–883, Oct. 2004. doi: 10.1080/08839510490509063
|
[73] |
F. Lian, A. Chakrabortty, and A. Duel-Hallen, “Game-theoretic multi-agent control and network cost allocation under communication constraints,” IEEE J. Sel. Areas Commun., vol. 35, no. 2, pp. 330–340, Feb. 2017. doi: 10.1109/JSAC.2017.2659338
|
[74] |
H. Qianwei, M. Hongxu, and Z. Hui, “Collision-avoidance mechanism of multi agent system,” in Proc. IEEE Int. Conf. Robotics, Intelligent Systems and Signal Processing, Changsha, China, 2003, pp. 1036–1040.
|
[75] |
Z. Liu, B. Wu, J. Dai, and H. Lin, “Distributed communication-aware motion planning for multi-agent systems from STL and SpaTel specifications,” in Proc. IEEE 56th Annu. Conf. Decision and Control, Melbourne, VIC, Australia, 2017, pp. 4452–4457.
|
[76] |
L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re, and S. Spanó, “Multi-agent reinforcement learning: A review of challenges and applications,” Appl. Sci., vol. 11, no. 11, p. 4948, May 2021. doi: 10.3390/app11114948
|
[77] |
M. J. Matarić, “Learning in behavior-based multi-robot systems: Policies, models, and other agents,” Cognit. Syst. Res., vol. 2, no. 1, pp. 81–93, Apr. 2001. doi: 10.1016/S1389-0417(01)00017-1
|
[78] |
T.-H. Ho and X. Su, “A dynamic level-k model in sequential games,” Manage. Sci., vol. 59, no. 2, pp. 452–469, Nov. 2013.
|
[79] |
Y. Rizk, M. Awad, and E. W. Tunstel, “Cooperative heterogeneous multi-robot systems: A survey,” ACM Comput. Surv. (CSUR), vol. 52, no. 2, p. 29, Apr. 2019.
|
[80] |
P. Schillinger, S. García, A. Makris, K. Roditakis, M. Logothetis, K. Alevizos, W. Ren, P. Tajvar, P. Pelliccione, A. Argyros, K. J. Kyriakopoulos, and D. V. Dimarogonas, “Adaptive heterogeneous multi-robot collaboration from formal task specifications,” Robot. Auton. Syst., vol. 145, p. 103866, Nov. 2021. doi: 10.1016/j.robot.2021.103866
|
[81] |
R. K. Ramachandran, P. Pierpaoli, M. Egerstedt, and G. S. Sukhatme, “Resilient monitoring in heterogeneous multi-robot systems through network reconfiguration,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 126–138, 2022. doi: 10.1109/TRO.2021.3128313
|
[82] |
Z. Yin, Q. Sun, C. Chang, Q. Guo, J. Dai, X. Huang, and X. Qiu, “Exchange-of-thought: Enhancing large language model capabilities through cross-model communication,” in Proc. Conf. Empirical Methods in Natural Language Processing, Singapore, Singapore, 2023, pp. 15135–15153.
|
[83] |
J. Ruan, Y. Chen, B. Zhang, Z. Xu, T. Bao, G. Du, S. Shi, H. Mao, X. Zeng, and R. Zhao, “TPTU: Task planning and tool usage of large language model-based AI agents,” arXiv preprint arXiv: 2308.03427v1, 2023.
|
[84] |
J. Wang, Y. Hong, J. Wang, J. Xu, Y. Tang, Q.-L. Han, and J. Kurths, “Cooperative and competitive multi-agent systems: From optimization to games,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 763–783, May 2022. doi: 10.1109/JAS.2022.105506
|
[85] |
M. Chen, “Robust tracking control for self-balancing mobile robots using disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 458–465, Jan. 2017. doi: 10.1109/JAS.2017.7510544
|
[86] |
R. Anil, A. M. Dai, O. Firat, et al., “PaLM 2 Technical Report,” arXiv preprint arXiv: 2305.10403, 2023.
|
[87] |
H. Touvron, L. Martin, K. Stone, et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv preprint arXiv: 2307.09288, 2023.
|
[88] |
Gemini Team and Google, “Gemini: A family of highly capable multimodal models,” arXiv preprint arXiv: 2312.11805, 2024.
|
[89] |
S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence: Early experiments with GPT-4,” arXiv preprint arXiv: 2303.12712, 2023.
|
[90] |
H. Cai and Y. Mostofi, “Human–robot collaborative site inspection under resource constraints,” IEEE Trans. Robot., vol. 35, no. 1, pp. 200–215, Feb. 2019. doi: 10.1109/TRO.2018.2875389
|
[91] |
T. Kaupp, A. Makarenko, and H. Durrant-Whyte, “Human–robot communication for collaborative decision making—A probabilistic approach,” Robot. Auton. Syst., vol. 58, no. 5, pp. 444–456, May 2010. doi: 10.1016/j.robot.2010.02.003
|
[92] |
V.-T. Ngo and Y.-C. Liu, “Human-robot coordination control for heterogeneous Euler-Lagrange systems under communication delays and relative position,” IEEE Trans. Ind. Electron., vol. 70, no. 2, pp. 1761–1771, Feb. 2023. doi: 10.1109/TIE.2022.3159924
|
[93] |
K. Zhang and X. Li, “Human-robot team coordination that considers human fatigue,” Int. J. Adv. Robot. Syst., vol. 11, no. 6, p. 91, Jun. 2014. doi: 10.5772/58228
|
[94] |
Y. Wang, K. Zhu, Y. Dai, D. Su, and K. Zhao, “A distributed training quantization strategy for low-speed and unstable network,” in Proc. 5th Int. Seminar on Artificial Intelligence, Networking and Information Technology, Nanjing, China, 2024, pp. 1094–1098.
|
[95] |
H. Li, Z. Wang, C. Lan, P. Wu, and N. Zeng, “A novel dynamic multiobjective optimization algorithm with non-inductive transfer learning based on multi-strategy adaptive selection,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 11, pp. 16533–16547, 2024. doi: 10.1109/TNNLS.2023.3295461
|
[96] |
H. Li, Z. Wang, N. Zeng, P. Wu, and Y. Li, “Promoting objective knowledge transfer: A cascaded fuzzy system for solving dynamic multiobjective optimization problems,” IEEE Trans. Fuzzy Syst., vol. 32, no. 11, pp. 6199–6213, Nov. 2024. doi: 10.1109/TFUZZ.2024.3443207
|
[97] |
Y. Du, S. Li, A. Torralba, J. B. Tenenbaum, and I. Mordatch, “Improving factuality and reasoning in language models through multiagent debate,” in Proc. 41st Int. Conf. Machine Learning, Vienna, Austria, 2023, p. 467.
|
[98] |
Z. Yuan, Y. Liu, Y. Cao, W. Sun, H. Jia, R. Chen, Z. Li, B. Lin, L. Yuan, L. He, C. Wang, Y. Ye, and L. Sun, “Mora: Enabling generalist video generation via a multi-agent framework,” arXiv preprint arXiv: 2403.13248, 2024.
|
[99] |
E. Frantar and D. Alistarh, “SparseGPT: Massive language models can be accurately pruned in one-shot,” in Proc. 40th Int. Conf. Machine Learning, Honolulu, HI, USA, 2023, pp. 414.
|
[100] |
X. Ma, G. Fang, and X. Wang, “LLM-pruner: On the structural pruning of large language models,” in Proc. 37th Int. Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2023, pp. 950.
|
[101] |
Z. Liu, B. Oguz, C. Zhao, E. Chang, P. Stock, Y. Mehdad, Y. Shi, R. Krishnamoorthi, and V. Chandra, “LLM-QAT: Data-free quantization aware training for large language models,” in Proc. Findings of the Association for Computational Linguistics, Bangkok, Thailand, 2024, pp. 467–484.
|
[102] |
Y. Li, Y. Yu, C. Liang, N. Karampatziakis, P. He, W. Chen, and T. Zhao, “LoftQ: LoRA-fine-tuning-aware quantization for large language models,” in Proc. 12th Int. Conf. Learning Representations, Vienna, Austria, 2024.
|
[103] |
Y. Wang, Y. Wang, J. Cai, T. K. Lee, C. Miao, and Z. J. Wang, “SSD-KD: A self-supervised diverse knowledge distillation method for lightweight skin lesion classification using dermoscopic images,” Med. Image Anal., vol. 84, p. 102693, 2023. doi: 10.1016/j.media.2022.102693
|
[104] |
N. Ho, L. Schmid, and S.-Y. Yun, “Large language models are reasoning teachers,” in Proc. 61st Annu. Meeting of the Association for Computational Linguistics, Toronto, Canada, 2023, pp. 14852–14882.
|
[105] |
X. Ma, S. Jeong, M. Zhang, D. Wang, J. Choi, and M. Jeon, “Cost-effective on-device continual learning over memory hierarchy with Miro,” in Proc. 29th Annu. Int. Conf. Mobile Computing and Networking, New York, NY, USA, 2023, pp. 83.
|
[106] |
Y. Nan, S. Jiang, and M. Li, “Large-scale video analytics with cloud–edge collaborative continuous learning,” ACM Trans. Sensor Netw., vol. 20, no. 1, p. 14, Oct. 2023.
|
[107] |
H. Daga, Y. Chen, A. Agrawal, and A. Gavrilovska, “CLUE: Systems support for knowledge transfer in collaborative learning with neural nets,” IEEE Trans. Cloud Comput., vol. 11, no. 4, pp. 3541–3554, Oct.-Dec. 2023. doi: 10.1109/TCC.2023.3294490
|
[108] |
Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-collaboration code generation via chatGPT,” ACM Trans. Softw. Eng. Methodol., vol. 33, no. 7, p. 189, 2024.
|
[109] |
G. Li, H. A. Al Kader Hammoud, H. Itani, D. Khizbullin, and B. Ghanem, “CAMEL: Communicative agents for “mind” exploration of large language model society,” in Proc. 37th Int. Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2023, pp. 2264.
|
[110] |
C. Qian, W. Liu, H. Liu, N. Chen, Y. Dang, J. Li, C. Yang, W. Chen, Y. Su, X. Cong, J. Xu, D. Li, Z. Liu, and M. Sun, “ChatDev: Communicative agents for software development,” in Proc. 62nd Annu. Meeting of the Association for Computational Linguistics, Bangkok, Thailand, 2024, pp. 15174–15186.
|
[111] |
Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang, S. Zhang, J. Liu, A. H. Awadallah, R. W. White, D. Burger, and C. Wang, “AutoGen: Enabling next-gen LLM applications via multi-agent conversation,” arXiv preprint arXiv: 2308.08155, 2023.
|
[112] |
J. S. Park, J. O$’$Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein, “Generative agents: Interactive simulacra of human behavior,” in Proc. 36th Annu. ACM Symp. on User Interface Software and Technology, San Francisco, CA, USA, 2023, p. 2.
|
[113] |
Z. Wang, S. Mao, W. Wu, T. Ge, F. Wei, and H. Ji, “Unleashing the emergent cognitive synergy in large language models: A task-solving agent through multi-persona self-collaboration,” in Proc. Conf. North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Mexico City, Mexico, 2024, pp. 257–279.
|
[114] |
C.-M. Chan, W. Chen, Y. Su, J. Yu, W. Xue, S. Zhang, J. Fu, and Z. Liu, “ChatEval: Towards better LLM-based evaluators through multi-agent debate,” in Proc. 12th Int. Conf. Learning Representations, Vienna, Austria, 2024.
|
[115] |
D. Jiang, X. Ren, and B. Y. Lin, “LLM-blender: Ensembling large language models with pairwise ranking and generative fusion,” in Proc. 61st Annu. Meeting of the Association for Computational Linguistics, Toronto, Canada, 2023, pp. 14165–14178.
|
[116] |
Z. Liu, Y. Zhang, P. Li, Y. Liu, and D. Yang, “Dynamic LLM-agent network: An LLM-agent collaboration framework with agent team optimization,” arXiv preprint arXiv: 2310.02170, 2024.
|
[117] |
W. Chen, Y. Su, J. Zuo, C. Yang, C. Yuan, C.-M. Chan, H. Yu, Y. Lu, Y.-H. Hung, C. Qian, Y. Qin, X. Cong, R. Xie, Z. Liu, M. Sun, and J. Zhou, “AgentVerse: Facilitating multi-agent collaboration and exploring emergent behaviors,” in Proc. 12th Int. Conf. on Learning Representations, Vienna, Austria, 2024.
|
[118] |
M. Zhuge, W. Wang, L. Kirsch, F. Faccio, D. Khizbullin, and J. Schmidhuber, “Language agents as optimizable graphs,” arXiv preprint arXiv: 2402.16823, 2024.
|
[119] |
H. Zhou, T. He, Y.-S. Ong, G. Cong, and Q. Chen, “Differentiable clustering for graph attention,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 8, pp. 3751–3764, Aug. 2024. doi: 10.1109/TKDE.2024.3363703
|
[120] |
M. Chen, X. Wu, X. Tang, T. He, Y.-S. Ong, Q. Liu, Q. Lao, and H. Yu, “Free-rider and conflict aware collaboration formation for cross-silo federated learning,” arXiv preprint arXiv: 2410.19321, 2024.
|
[121] |
Y. Liu, P. Huang, F. Yang, K. Huang, and L. Shu, “QuAsyncFL: Asynchronous federated learning with quantization for cloud-edge-terminal collaboration enabled AIoT,” IEEE Internet Things J., vol. 11, no. 1, pp. 59–69, Jan. 2024. doi: 10.1109/JIOT.2023.3290818
|
[122] |
X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, “Federated deep reinforcement learning for internet of things with decentralized cooperative edge caching,” IEEE Internet Things J., vol. 7, no. 10, pp. 9441–9455, Oct. 2020. doi: 10.1109/JIOT.2020.2986803
|
[123] |
Y. Mao, J. Zhang, and K. B. Letaief, “Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems,” in Proc. IEEE Wireless Communications and Networking Conf., San Francisco, CA, USA, 2017, pp. 1–6.
|
[124] |
Y. Tian, X. Yang, J. Zhang, Y. Dong, and H. Su, “Evil geniuses: Delving into the safety of LLM-based agents,” arXiv preprint arXiv: 2311.11855, 2024.
|
[125] |
P. Manakul, A. Liusie, and M. J. F. Gales, “SelfCheckGPT: Zero-resource black-box hallucination detection for generative large language models,” in Proc. Conf. Empirical Methods in Natural Language Processing, Singapore, Singapore, 2023, pp. 9004–9017.
|
[126] |
T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60, May 2020. doi: 10.1109/MSP.2020.2975749
|
[127] |
C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and G. Chen, “Billion-scale federated learning on mobile clients: A submodel design with tunable privacy,” in Proc. 26th Annu. Int. Conf. Mobile Computing and Networking, London, UK, 2020, pp. 31.
|
[128] |
X. Ge, Q.-L. Han, Q. Wu, and X.-M. Zhang, “Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1234–1251, May 2023. doi: 10.1109/JAS.2022.105845
|
[129] |
L. Wang, Z. Wang, Q.-L. Han, and G. Wei, “Synchronization control for a class of discrete-time dynamical networks with packet dropouts: A coding-decoding-based approach,” IEEE Trans. Cybern., vol. 48, no. 8, pp. 2437–2448, Aug. 2018. doi: 10.1109/TCYB.2017.2740309
|
[130] |
D. Ding, Z. Wang, and Q.-L. Han, “Neural-network-based consensus control for multiagent systems with input constraints: The event-triggered case,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3719–3730, Aug. 2020. doi: 10.1109/TCYB.2019.2927471
|
[131] |
J. Blumenkamp, A. Shankar, M. Bettini, J. Bird, and A. Prorok, “The cambridge robomaster: An agile multi-robot research platform,” arXiv preprint arXiv: 2405.02198, 2024.
|