A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 12
Dec.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
C. He, H. Geng, K. Rajashekara, and  A. Chandra,  “Analysis and control of frequency stability in low-inertia power systems: A review,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 2363–2383, Dec. 2024. doi: 10.1109/JAS.2024.125013
Citation: C. He, H. Geng, K. Rajashekara, and  A. Chandra,  “Analysis and control of frequency stability in low-inertia power systems: A review,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 2363–2383, Dec. 2024. doi: 10.1109/JAS.2024.125013

Analysis and Control of Frequency Stability in Low-Inertia Power Systems: A Review

doi: 10.1109/JAS.2024.125013
Funds:  This work was supported by the National Natural Science Foundation of China (U2166601)
More Information
  • Power electronic-interfaced renewable energy sources (RES) exhibit lower inertia compared to traditional synchronous generators. The large-scale integration of RES has led to a significant reduction in system inertia, posing significant challenges for maintaining frequency stability in future power systems. This issue has garnered considerable attention in recent years. However, the existing research has not yet achieved a comprehensive understanding of system inertia and frequency stability in the context of low-inertia systems. To this end, this paper provides a comprehensive review of the definition, modeling, analysis, evaluation, and control for frequency stability. It commences with an exploration of inertia and frequency characteristics in low-inertia systems, followed by a novel definition of frequency stability. A summary of frequency stability modeling, analysis, and evaluation methods is then provided, along with their respective applicability in various scenarios. Additionally, the two critical factors of frequency control—energy sources at the system level and control strategies at the device level—are examined. Finally, an outlook on future research in low-inertia power systems is discussed.

     

  • loading
  • [1]
    F. Blaabjerg, M. Chen, and L. Huang, “Power electronics in wind generation systems,” Nat. Rev. Electr. Eng., vol. 1, no. 4, pp. 234–250, Mar. 2024. doi: 10.1038/s44287-024-00032-x
    [2]
    IRENA, Renewable Capacity Statistics 2024. Abu Dhabi, The United Arab Emirates: International Renewable Energy Agency, 2024.
    [3]
    DNV KEMA Ltd., “An independent analysis on the ability of generators to ride through rate of change of frequency values up to 2Hz/s,” EirGrid, London, UK, 16010927, 2013.
    [4]
    Australian Energy Market Operator Limited, “Black system South Australia 28 September 2016: Final report,” Australian Energy Market Operator, New South Wales, Australia, 2017.
    [5]
    J. Bialek, “What does the GB power outage on 9 august 2019 tell us about the current state of decarbonised power systems?” Energy Policy, vol. 146, p. 111821, Nov. 2020. doi: 10.1016/j.enpol.2020.111821
    [6]
    P. Christensen, M. Seidel, S. Engelken, and T. Knueppel, “High penetration of power electronic interfaced power sources and the potential contribution of grid forming converters,” European Network of Transmission System Operators for Electricity, Brussels, Belgium, 2020.
    [7]
    P. Makolo, R. Zamora, and T.-T. Lie, “The role of inertia for grid flexibility under high penetration of variable renewables——A review of challenges and solutions,” Renew. Sustain. Energy Rev., vol. 147, p. 111223, Sept. 2021. doi: 10.1016/j.rser.2021.111223
    [8]
    L. Ye, K. Wang, Y. Lai, H. Chen, Y. Zhao, X. Xu, P. Lu, and Y. Jin, “Review of frequency characteristics analysis and battery energy storage frequency regu-lation control strategies in power system under low inertia level,” Power Syst. Technol., vol. 47, no. 2, pp. 446–462, Feb. 2023.
    [9]
    G. Li, X. Liu, Y. Xin, T. Jiang, K. Yan, and T. Wang, “Research on frequency stability of power system with high penetration renewable energy: A review,” High Volt. Eng., vol. 50, no. 3, pp. 1165–1181, Mar. 2024.
    [10]
    A. H. Besheer, X. Liu, S. Fathalla Eissa, M. Rabah, A. Mahgoub, and H. Rashad, “Overview on fast primary frequency adjustment technology for wind power future low inertia systems,” Alex. Eng. J., vol. 78, pp. 318–338, Sept. 2023. doi: 10.1016/j.aej.2023.07.032
    [11]
    B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, and B.-M. Hodge “Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy,” IEEE Power Energy Mag., vol. 15, no. 2, pp. 61–73, Mar.–Apr. 2017.
    [12]
    R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers. 6th ed. London, UK: Thomson-Brooks/Cole, 2004.
    [13]
    A. Monti, C. Muscas, and F. Ponci, Phasor Measurement Units and Wide Area Monitoring Systems. Cambridge, USA: Elsevier, 2016.
    [14]
    US-IEEE. IEEE/IEC International Standard-Measuring Relays and Protection Equipment——Part 118-1: Synchrophasor for Power Systems-Measurements, 60255-118-1-2018, 2018.
    [15]
    E. Ørum, M. Kuivaniemi, M. Laasonen, A. I. Bruseth, E. A. Jansson, A. Danell, K. Elkington, and N. Modig, “Future system inertia,” ENTSOE, Bruss, Belgium, 2015.
    [16]
    P. Tielens, “Operation and control of power systems with low synchronous inertia,” Ph.D. dissertation, KU Leuven, Leuven, Belgium, 2017.
    [17]
    C. Phurailatpam, Z. H. Rather, B. Bahrani, and S. Doolla, “Measurement-based estimation of inertia in AC microgrids,” IEEE Trans. Sustain. Energy, vol. 11, no. 3, pp. 1975–1984, Jul. 2020. doi: 10.1109/TSTE.2019.2948224
    [18]
    F. Milano, F. Dörfler, G. Hug, D. J. Hill, and G. Verbič, “Foundations and challenges of low-inertia systems (invited paper),” in Proc. Power Systems Computation Conf., Dublin, Ireland, 2018, pp. 1–25.
    [19]
    P. Kundur, Power System Stability and Control. New York, USA: McGraw-Hill, 1994.
    [20]
    K. Jagatheesan, B. Anand, S. Samanta, N. Dey, A. S. Ashour, and V. E. Balas, “Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 503–515, Mar. 2019. doi: 10.1109/JAS.2017.7510436
    [21]
    Nahid-Al-Masood, N. H. Shazon, S. R. Deeba, and S. R. Modak, “A frequency and voltage stability-based load shedding technique for low inertia power systems,” IEEE Access, vol. 9, pp. 78947–78961, May 2021. doi: 10.1109/ACCESS.2021.3084457
    [22]
    B. She, F. Li, H. Cui, J. Wang, Q. Zhang, and R. Bo, “Virtual inertia scheduling (VIS) for real-time economic dispatch of IBR-penetrated power systems,” IEEE Trans. Sustain. Energy, vol. 15, no. 2, pp. 938–951, Apr. 2024. doi: 10.1109/TSTE.2023.3319307
    [23]
    X. He, H. Geng, and G. Mu, “Modeling of wind turbine generators for power system stability studies: A review,” Renew. Sustain. Energy Rev., vol. 143, p. 110865, Jun. 2021. doi: 10.1016/j.rser.2021.110865
    [24]
    G. W. Wester and R. D. Middlebrook, “Low-frequency characterization of switched DC-DC converters,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-9, no. 3, pp. 376–385, May 1973. doi: 10.1109/TAES.1973.309723
    [25]
    D. Weisser and R. S. Garcia, “Instantaneous wind energy penetration in isolated electricity grids: Concepts and review,” Renew. Energy, vol. 30, no. 8, pp. 1299–1308, Jul. 2005. doi: 10.1016/j.renene.2004.10.002
    [26]
    U. Markovic, O. Stanojev, P. Aristidou, E. Vrettos, D. Callaway, and G. Hug, “Understanding small-signal stability of low-inertia systems,” IEEE Trans. Power Syst., vol. 36, no. 5, pp. 3997–4017, Sept. 2021. doi: 10.1109/TPWRS.2021.3061434
    [27]
    J. Zhou, Y. Guo, L. Yang, J. Shi, Y. Zhang, Y. Li, Q. Guo, and H. Sun, “A review on frequency management for low-inertia power systems: From inertia and fast frequency response perspectives,” Electr. Power Syst. Res., vol. 228, p. 110095, Mar. 2024. doi: 10.1016/j.jpgr.2023.110095
    [28]
    Australian Energy Market Commission. National Electricity Rules Version 209. [Online]. Available: https://energy-rules.aemc.gov.au/ner/539. Accessed on: May 24, 2024.
    [29]
    T. Kerdphol, F. S. Rahman, M. Watanabe, and Y. Mitani, “An overview of virtual inertia and its control,” in Virtual Inertia Synthesis and Control, T. Kerdphol, F. S. Rahman, M. Watanabe, and Y. Mitani, Eds. Cham, Germany: Springer, 2021, pp. 1–11.
    [30]
    Z. Shuai, Y. Hu, Y. Peng, C. Tu, and Z. J. Shen, “Dynamic stability analysis of synchronverter-dominated microgrid based on bifurcation theory,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7467–7477, Sept. 2017. doi: 10.1109/TIE.2017.2652387
    [31]
    Y. Chen, R. Hesse, D. Turschner, and H.-P. Beck, “Comparison of methods for implementing virtual synchronous machine on inverters,” RE&PQJ, vol. 1, no. 10, pp. 734–739, Apr. 2012.
    [32]
    H. Bevrani, T. Ise, and Y. Miura, “Virtual synchronous generators: A survey and new perspectives,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 244–254, Jan. 2014. doi: 10.1016/j.ijepes.2013.07.009
    [33]
    Q. Hong, A. U. Khan, C. Henderson, A. Egea-àlvarez, D. Tzelepis, and C. Booth, “Addressing frequency control challenges in future low-inertia power systems: A Great Britain perspective,” Engineering, vol. 7, no. 8, pp. 1057–1063, Aug. 2021. doi: 10.1016/j.eng.2021.06.005
    [34]
    T. Wang, M. Wang, S. Ma, Y. Jing, and G. Wang, “Method for calculating the equivalent inertia of power systems considering the frequency heterogeneity,” in Proc. IEEE 3rd Student Conf. Electrical Machines and Systems, Jinan, China, 2020, pp. 440–443.
    [35]
    H. Geng, C. He, Y. Liu, X. He, and M. Li, “Overview on transient synchronization stability of renewable-rich power systems,” High Volt. Eng., vol. 48, no. 9, pp. 3367–3383, Sept. 2022.
    [36]
    Y. Liu, H. Geng, M. Huang, and X. Zha, “Dynamic current limiting of grid-forming converters for transient synchronization stability enhancement,” IEEE Trans. Ind. Appl., vol. 60, no. 2, pp. 2238–2248, Mar.–Apr. 2024. doi: 10.1109/TIA.2023.3305428
    [37]
    H. Deng, J. Fang, Y. Tang, and V. Debusschere, “Coupling effect of active and reactive power controls on synchronous stability of VSGs,” in Proc. IEEE 4th Int. Future Energy Electronics Conf., Singapore, Singapore, 2019, pp. 1–6.
    [38]
    J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, “Advanced control architectures for intelligent microgrids—Part I: Decentralized and hierarchical control,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1254–1262, Apr. 2013. doi: 10.1109/TIE.2012.2194969
    [39]
    S. M. Azizi, “Robust controller synthesis and analysis in inverter-dominant droop-controlled islanded microgrids,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1401–1415, Aug. 2021. doi: 10.1109/JAS.2021.1004006
    [40]
    L. Ding, Y. Guo, W. Bao, C. Zhang, Z. Wang, and G. Song, “Inertia of power systems from energy perspective,” Automat. Electr. Power Syst., vol. 48, no. 8, pp. 3–13, Apr. 2024.
    [41]
    F. Liu, G. Xu, J. Liu, C. Wang, T. Bi, and X. Guo, “Inertia distribution characteristics of power system considering structure and parameters of power grid,” Automat. Electr. Power Syst., vol. 45, no. 23, pp. 60–67, Dec. 2021.
    [42]
    A. Ulbig, T. S. Borsche, and G. Andersson, “Analyzing rotational inertia, grid topology and their role for power system stability,” IFAC-Pap., vol. 48, no. 30, pp. 541–547, Dec. 2015.
    [43]
    F. Zeng, J. Zhang, Y. Zhou, and S. Qu, “Online identification of inertia distribution in normal operating power system,” IEEE Trans. Power Syst., vol. 35, no. 4, pp. 3301–3304, Jul. 2020. doi: 10.1109/TPWRS.2020.2986721
    [44]
    M. He, W. He, J. Hu, X. Yuan, and M. Zhan, “Nonlinear analysis of a simple amplitude-phase motion equation for power-electronics-based power system,” Nonlinear Dyn., vol. 95, no. 3, pp. 1965–1976, Feb. 2019. doi: 10.1007/s11071-018-4671-6
    [45]
    Y. Wen, W. Yang, and X. Lin, “Review and prospect of frequency stability analysis and control of low-inertia power systems,” Electr. Power Automat. Equip., vol. 40, no. 9, pp. 211–222, Sept. 2020.
    [46]
    H. Huang, P. Ju, Y. Jin, X. Yuan, C. Qin, and X. Pan, “Generic system frequency response model for power grids with different generations,” IEEE Access, vol. 8, pp. 14314–14321, Jan. 2020. doi: 10.1109/ACCESS.2020.2965591
    [47]
    J. Shen, W. Li, L. Liu, C. Jin, K. Wen, and X. Wang, “Frequency response model and its closed-form solution of two-machine equivalent power system,” IEEE Trans. Power Syst., vol. 36, no. 3, pp. 2162–2173, May 2021. doi: 10.1109/TPWRS.2020.3037695
    [48]
    J. Dai, Y. Tang, Q. Wang, P. Jiang, and Y. Hou, “An extended SFR model with high penetration wind power considering operating regions and wind speed disturbance,” IEEE Access, vol. 7, pp. 103416–103426, Jul. 2019. doi: 10.1109/ACCESS.2019.2930807
    [49]
    F. Milano and Á. Ortega, “Frequency divider,” IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1493–1501, Mar. 2017. doi: 10.1109/TPEL.2016.2543222
    [50]
    B. Tan, J Zhao, N. Duan, D. A. Maldonado, Y. Zhang, and H. Zhang, “Distributed frequency divider for power system bus frequency online estimation considering virtual inertia from DFIGs,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 12, no. 1, pp. 161–171, Mar. 2022. doi: 10.1109/JETCAS.2022.3141975
    [51]
    J. Zhao, L. Mili, and F. Milano, “Robust frequency divider for power system online monitoring and control,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4414–4423, Jul. 2018. doi: 10.1109/TPWRS.2017.2785348
    [52]
    H. Kirkham, W. Dickerson, and A. Phadke, “Defining power system frequency,” in Proc. IEEE Power & Energy Society General Meeting, Portland, OR, USA, 2018, pp. 1–5.
    [53]
    X. Yuan, S. Cheng, and J. Hu, “Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems,” Proc. CSEE, vol. 36, no. 19, pp. 5145–5154, Oct. 2016.
    [54]
    R. Sun, W. He, and X. Yuan, “Relationship for electric network between internal voltage amplitude/frequency stimulation and active/reactive power response and its characteristics analysis,” IEEE Access, vol. 12, pp. 7399–7412, Jan. 2024. doi: 10.1109/ACCESS.2024.3350141
    [55]
    Z. Yang, C. Mei, S. Cheng, and M. Zhan, “Comparison of impedance model and amplitude-phase model for power-electronics-based power system,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 3, pp. 2546–2558, Sept. 2020. doi: 10.1109/JESTPE.2019.2927109
    [56]
    L. Shang, J. Hu, X. Yuan, W. Tang, and X. Hou, “Amplitude-phase-locked loop: Estimator of three-phase grid voltage vector,” in Proc. IEEE Power and Energy Society General Meeting, Denver, CO, USA, 2015, pp. 1–5.
    [57]
    L. Xu, L. Li, M. Wang, X. Wang, Y. Li, and W. Li, “Online prediction method for power system frequency response analysis based on swarm intelligence fusion model,” IEEE Access, vol. 11, pp. 13519–13532, Jan. 2023. doi: 10.1109/ACCESS.2023.3242557
    [58]
    F. Bai, Y. Cui, R. Yan, T. K. Saha, H. Gu, and D. Eghbal, “Frequency response of PV inverters toward high renewable penetrated distribution networks,” CSEE J. Power Energy Syst., vol. 8, no. 2, pp. 465–475, Mar. 2022.
    [59]
    M. B. Djukanovic, D. P. Popovic, D. J. Sobajic, and Y.-H. Pao, “Prediction of power system frequency response after generator outages using neural nets,” IEE Proc. C Gener. Transm. Distrib., vol. 140, no. 5, pp. 389–398, Nov. 1993. doi: 10.1049/ip-c.1993.0057
    [60]
    P. Huynh, H. Zhu, Q. Chen, and A. E. Elbanna, “Data-driven estimation of frequency response from ambient synchrophasor measurements,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6590–6599, Nov. 2018. doi: 10.1109/TPWRS.2018.2832838
    [61]
    C. Zhang and S. Liu, “Meta-energy: When integrated energy internet meets metaverse,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 580–583, Mar. 2023. doi: 10.1109/JAS.2023.123492
    [62]
    A. G. Phadke, H. Volskis, R. M. de Moraes, T. Bi, R. N. Nayak, Y. K. Sehgal, “The wide world of wide-area measurement,” IEEE Power Energy Mag., vol. 6, no. 5, pp. 52–65, Sept.–Oct. 2008. doi: 10.1109/MPE.2008.927476
    [63]
    J. Zhang, Y. Wang, G. Zhou, L. Wang, B. Li, and K. Li, “Integrating physical and data-driven system frequency response modelling for wind-PV-thermal power systems,” IEEE Trans. Power Syst., vol. 39, no. 1, pp. 217–228, Jan. 2024. doi: 10.1109/TPWRS.2023.3242832
    [64]
    Q. Wang, F. Li, Y. Tang, and Y. Xu, “Integrating model-driven and data-driven methods for power system frequency stability assessment and control,” IEEE Trans. Power Syst., vol. 34, no. 6, pp. 4557–4568, Nov. 2019. doi: 10.1109/TPWRS.2019.2919522
    [65]
    F. Nawaz, E. Pashajavid, Y. Fan, and M. Batool, “A comprehensive review of the state-of-the-art of secondary control strategies for microgrids,” IEEE Access, vol. 11, pp. 102444–102459, Sept. 2023. doi: 10.1109/ACCESS.2023.3316016
    [66]
    E. Espina, J. Llanos, C. Burgos-Mellado, R. Cárdenas-Dobson, M. Martínez-Gómez, and D. Sáez, “Distributed control strategies for microgrids: An overview,” IEEE Access, vol. 8, pp. 193412–193448, Oct. 2020. doi: 10.1109/ACCESS.2020.3032378
    [67]
    Y. Sabri, N. El Kamoun, and F. Lakrami, “A survey: Centralized, decentralized, and distributed control scheme in smart grid systems,” in Proc. 7th Mediterranean Congr. Telecommunications, Fez, Morocco, 2019, pp. 1–11.
    [68]
    S. Ali, Z. Zheng, M. Aillerie, J.-P. Sawicki, M.-C. Péra, and D. Hissel, “A review of DC microgrid energy management systems dedicated to residential applications,” Energies, vol. 14, no. 14, p. 4308, Jul. 2021. doi: 10.3390/en14144308
    [69]
    K. Zuo and L. Wu, “A review of decentralized and distributed control approaches for islanded microgrids: Novel designs, current trends, and emerging challenges,” Electr. J., vol. 35, no. 5, p. 107138, Jun. 2022. doi: 10.1016/j.tej.2022.107138
    [70]
    K. Liao, Y. Xu, Y. Wang, and P. Lin, “Hybrid control of DFIGs for short-term and long-term frequency regulation support in power systems,” IET Renew. Power Gener., vol. 13, no. 8, pp. 1271–1279, Jun. 2019. doi: 10.1049/iet-rpg.2018.5496
    [71]
    Y. Tan, L. Meegahapola, and K. M. Muttaqi, “A suboptimal power-point-tracking-based primary frequency response strategy for DFIGs in hybrid remote area power supply systems,” IEEE Trans. Energy Convers., vol. 31, no. 1, pp. 93–105, Mar. 2016. doi: 10.1109/TEC.2015.2476827
    [72]
    C. Li, Y. Yang, N. Mijatovic, and T. Dragicevic, “Frequency stability assessment of grid-forming VSG in framework of MPME with feedforward decoupling control strategy,” IEEE Trans. Ind. Electron., vol. 69, no. 7, pp. 6903–6913, Jul. 2022. doi: 10.1109/TIE.2021.3099236
    [73]
    Q. Guo and Z. Li, “Summarization of synchronous condenser development,” Proc. CSEE, vol. 43, no. 15, pp. 6050–6063, Aug. 2023.
    [74]
    A. Moeini and I. Kamwa. “Analytical concepts for reactive power based Primary Frequency Control in Power Systems,” IEEE Trans. Power Systems, vol. 31, no. 6, pp. 4217–4230, Jan. 2016.
    [75]
    H. T. Nguyen, G. Yang, A. H. Nielsen, and P. H. Jensen, "Combination of synchronous condenser and synthetic inertia for frequency stability enhancement in low-inertia systems,” IEEE Trans. Sustainable Energy, vol. 10, no. 3, pp. 997–1005, Jul. 2019.
    [76]
    Y. Huang, Y. Wang, C. Li, H. Zhao, and Q. Wu, “Physics insight of the inertia of power systems and methods to provide inertial response,” CSEE J. Power Energy Syst., vol. 8, no. 2, pp. 559–568, Mar. 2022.
    [77]
    S. Wei, Y. Zhou, G. Xu, and Y. Huang, “Motor-generator pair: A novel solution to provide inertia and damping for power system with high penetration of renewable energy,” IET Gener. Transm. Distrib., vol. 11, no. 7, pp. 1839–1847, May 2017. doi: 10.1049/iet-gtd.2016.1894
    [78]
    X. Wang, R. Liu, L. Feng, D. Sun, D. Liu, and Y. Sun, “Application of energy storage technology in frequency control of high proportion new energy power system,” in Proc. 6th Asia Conf. Power and Electrical Engineering, Chongqing, China, 2021, pp. 853–857.
    [79]
    X. Zhao, S. Zou, and Z. Ma, “Decentralized resilient H load frequency control for cyber-physical power systems under DoS attacks,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 11, pp. 1737–1751, Nov. 2021. doi: 10.1109/JAS.2021.1004162
    [80]
    C. Silva, P. Faria, Z. Vale, and J. M. Corchado, “Demand response performance and uncertainty: A systematic literature review,” Energy Strategy Rev., vol. 41, p. 100857, May 2022. doi: 10.1016/j.esr.2022.100857
    [81]
    Y. Qi, T. Yang, J. Fang, Y. Tang, K. R. R. Potti, and K. Rajashekara, “Grid inertia support enabled by smart loads,” IEEE Trans. Power Electron., vol. 36, no. 1, pp. 947–957, Jan. 2021. doi: 10.1109/TPEL.2020.2999411
    [82]
    S. A. Pourmousavi and M. H. Nehrir, “Real-time central demand response for primary frequency regulation in microgrids,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1988–1996, Dec. 2012. doi: 10.1109/TSG.2012.2201964
    [83]
    S. Wang, H. Zhu, and S. Zhang, “Two-stage grid-connected frequency regulation control strategy based on photovoltaic power prediction,” Sustainability, vol. 15, no. 11, p. 8929, Jun. 2023. doi: 10.3390/su15118929
    [84]
    N. Mendis, K. M. Muttaqi, and S. Perera, “Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 944–953, Mar. 2014. doi: 10.1109/TSG.2013.2287874
    [85]
    S. El Itani, U. D. Annakkage, and G. Joos, “Short-term frequency support utilizing inertial response of DFIG wind turbines,” in Proc. IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 1–8.
    [86]
    D. Yang, G.-G. Yan, T. Zheng, X. Zhang, and L. Hua, “Fast frequency response of a DFIG based on variable power point tracking control,” IEEE Trans. Ind. Appl., vol. 58, no. 4, pp. 5127–5135, Jul.–Aug. 2022. doi: 10.1109/TIA.2022.3177590
    [87]
    L. Xiong, X. Liu, H. Liu, and Y. Liu, “Performance comparison of typical frequency response strategies for power systems with high penetration of renewable energy sources,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 12, no. 1, pp. 41–47, Mar. 2022. doi: 10.1109/JETCAS.2022.3141691
    [88]
    D. Fernández-Muñoz, J. I. Pérez-Díaz, I. Guisández, M. Chazarra, and Á. Fernández-Espina, “Fast frequency control ancillary services: An international review,” Renew. Sustain. Energy Rev., vol. 120, p. 109662, Mar. 2020. doi: 10.1016/j.rser.2019.109662
    [89]
    X. He, H. Geng, J. Xi, and J. M. Guerrero, “Resynchronization analysis and improvement of grid-connected VSCs during grid faults,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 1, pp. 438–450, Feb. 2021. doi: 10.1109/JESTPE.2019.2954555
    [90]
    X. He and H. Geng, “PLL synchronization stability of grid-connected multiconverter systems,” IEEE Trans. Ind. Appl., vol. 58, no. 1, pp. 830–842, Jan.–Feb. 2022.
    [91]
    X. Guo, D. Zhu, J. Hu, X. Zou, Y. Kang, and J. M. Guerrero, “Inertial PLL of grid-connected converter for fast frequency support,” CSEE J. Power Energy Syst., vol. 9, no. 4, pp. 1594–1599, Jul. 2023.
    [92]
    Y. Cui, P. Song, X. S. Wang, W. X. Yang, H. Liu, and H. M. Liu, “Wind power virtual synchronous generator frequency regulation characteristics field test and analysis,” in Proc. 2nd Int. Conf. Green Energy and Applications, Singapore, Singapore, 2018, pp. 193–196.
    [93]
    M. Guan, W. Pan, J. Zhang, Q. Hao, J. Cheng, and X. Zheng, “Synchronous generator emulation control strategy for voltage source converter (VSC) stations,” IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3093–3101, Nov. 2015. doi: 10.1109/TPWRS.2014.2384498
    [94]
    R. Domingo-Enrich, X. He, V. Häberle, and F. Dörfler, “Dynamic complex-frequency control of grid-forming converters,” arXiv preprint arXiv: 2404.10071, 2024.
    [95]
    S. Chen, Y. Sun, H. Han, G. Shi, Y. Guan, and J. M. Guerrero, “Dynamic frequency performance analysis and improvement for parallel VSG systems considering virtual inertia and damping coefficient,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 11, no. 1, pp. 478–489, Feb. 2023. doi: 10.1109/JESTPE.2022.3208249
    [96]
    B. Tan, J. Zhao, M. Netto, V. Krishnan, V. Terzija, and Y. Zhang, “Power system inertia estimation: Review of methods and the impacts of converter-interfaced generations,” Int. J. Electr. Power Energy Syst., vol. 134, p. 107362, Jan. 2022. doi: 10.1016/j.ijepes.2021.107362
    [97]
    L. Xiong, X. Liu, D. Zhang, and Y. Liu, “Rapid power compensation-based frequency response strategy for low-inertia power systems,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 4, pp. 4500–4513, Aug. 2021. doi: 10.1109/JESTPE.2020.3032063
    [98]
    Z. Guo and W. Wu, “Data-driven model predictive control method for wind farms to provide frequency support,” IEEE Trans. Energy Convers., vol. 37, no. 2, pp. 1304–1313, Jun. 2022. doi: 10.1109/TEC.2021.3125369
    [99]
    M. V. Kazemi, S. J. Sadati, and S. A. Gholamian, “Adaptive frequency control of microgrid based on fractional order control and a data-driven control with stability analysis,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 381–392, Jan. 2022. doi: 10.1109/TSG.2021.3109627
    [100]
    Y. Li, W. Gao, S. Huang, R. Wang, W. Yan, and V. Gevorgian, “Data-driven optimal control strategy for virtual synchronous generator via deep reinforcement learning approach,” J. Mod. Power Syst. Clean Energy, vol. 9, no. 4, pp. 919–929, Jul. 2021. doi: 10.35833/MPCE.2020.000267
    [101]
    A. Joshi, S. Capezza, A. Alhaji, and M.-Y. Chow, “Survey on AI and machine learning techniques for microgrid energy management systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1513–1529, Jul. 2023. doi: 10.1109/JAS.2023.123657
    [102]
    P. Tielens and D. Van Hertem, “The relevance of inertia in power systems,” Renew. Sustain. Energy Rev., vol. 55, pp. 999–1009, Mar. 2016. doi: 10.1016/j.rser.2015.11.016
    [103]
    N. W. Miller, M. Shao, S. Pajic, and R. DÁquila, “Western wind and solar integration study Phase 3-Frequency response and transient stability,” National Renewable Energy Laboratory. (NREL), Schenectady, USA. [Online]. Available: https://www.nrel.gov/docs/fy15osti/62906.pdf. Accessed on: May 12, 2024.
    [104]
    E. Rakhshani, D. Gusain, V. Sewdien, J. L. Rueda Torres, and M. A. M. M. van der Meijden, “A key performance indicator to assess the frequency stability of wind generation dominated power system,” IEEE Access, vol. 7, pp. 130957–130969, Sept. 2019. doi: 10.1109/ACCESS.2019.2940648
    [105]
    Z. Han, P. Ju, C. Qin, D. Sun, H. Sun, and Y. Zheng, “Review and prospect of research on frequency security of new power system,” Electr. Power Automat. Equip., vol. 43, no. 9, pp. 112–124, Sept. 2023.
    [106]
    X. Wang, M. G. Taul, H. Wu, Y. Liao, F. Blaabjerg, and L. Harnefors, “Grid-synchronization stability of converter-based resources—An overview,” IEEE Open J. Ind. Appl., vol. 1, pp. 115–134, Aug. 2020. doi: 10.1109/OJIA.2020.3020392
    [107]
    C. Zhang, Advanced Control of Grid-Connected High-Power Converters. Singapore: Springer, 2023.
    [108]
    C. Qin, C. Zhang, A. Chen, X. Xing, and G. Zhang, “Circulating current suppression for parallel three-level inverters under unbalanced operating conditions,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 1, pp. 480–492, Mar. 2019. doi: 10.1109/JESTPE.2018.2813390
    [109]
    C. Zhang, Z. Wang, X. Xing, X. Li, and X. Liu, “Modeling and suppression of circulating currents among parallel single-phase three-level grid-tied inverters,” IEEE Trans. Ind. Electron., vol. 69, no. 12, pp. 12967–12979, Dec. 2022. doi: 10.1109/TIE.2021.3127012
    [110]
    F. Zhao, C. Zhang, and B. Sun, “Initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 385–393, Oct. 2016. doi: 10.1109/JAS.2016.7510079
    [111]
    Z. Deng and C. Xu, “Frequency regulation of power systems with a wind farm by sliding-mode-based design,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 1980–1989, Nov. 2022. doi: 10.1109/JAS.2022.105407
    [112]
    F. Zhao, C. Zhang, B. Sun, and D. Wei, “Three-stage collaborative global optimization design method of combined cooling heating and power,” Proc. CSEE, vol. 35, no. 15, pp. 3785–3793, Aug. 2015.
    [113]
    J. Riesz, J. Gilmore, and I. MacGill, “Frequency control ancillary service market design: Insights from the Australian National Electricity Market,” Electr. J., vol. 28, no. 3, pp. 86–99, Apr. 2015. doi: 10.1016/j.tej.2015.03.006
    [114]
    G. Rancilio, A. Rossi, D. Falabretti, A. Galliani, and M. Merlo, “Ancillary services markets in Europe: Evolution and regulatory trade-offs,” Renew. Sustain. Energy Rev., vol. 154, p. 111850, Feb. 2022. doi: 10.1016/j.rser.2021.111850
    [115]
    C. Zhao, D. Sun, L. Zhang, H. Nian, and B. Hu, “Two-stage optimal re/active power control of large-scale wind farm to mitigate voltage dip induced frequency excursion,” IEEE Trans. Sustain. Energy, vol. 14, no. 1, pp. 730–733, Jan. 2023. doi: 10.1109/TSTE.2022.3216160
    [116]
    H. Karbouj and Z. H. Rather, “A novel wind farm control strategy to mitigate voltage dip induced frequency excursion,” IEEE Trans. Sustain. Energy, vol. 10, no. 2, pp. 637–645, Apr. 2019. doi: 10.1109/TSTE.2018.2842232
    [117]
    C. Zhang, Y. Jiang, X. Xing, X. Li, C. Qin, and B. Zhang, “Passivity-based control method for three-level photovoltaic inverter to mitigate common-mode resonant current,” IEEE Trans. Ind. Inform., vol. 19, no. 9, pp. 9733–9744, Sept. 2023. doi: 10.1109/TII.2023.3234025
    [118]
    C. Zhang, L. Chang, and C. Fu, Variable Gain Control and Its Applications in Energy Conversion. Boca Raton, USA: CRC Press, 2023.
    [119]
    Y. Jiang, C. Qin, X. Xing, X. Li, and C. Zhang, “A hybrid passivity-based control strategy for three-level T-type inverter in LVRT operation,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 4, pp. 4009–4024, Dec. 2020. doi: 10.1109/JESTPE.2019.2928571
    [120]
    R. Mo, Y. Yang, R. Chen, W. Wu, J. Hu, H. Wen, Y. Wang, G. Fang, and J. Rodriguez, “Low-complexity virtual-vector-based FCS-MPC with unaffected neutral-point voltage for three-phase T-type inverters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 12, no. 2, pp. 1683–1693, Apr. 2024. doi: 10.1109/JESTPE.2023.3348289
    [121]
    H. Liu, B. Wang, N. Wang, Q. Wu, Y. Yang, H. Wei, and C. Li, “Enabling strategies of electric vehicles for under frequency load shedding,” Appl. Energy, vol. 228, pp. 843–851, Oct. 2018. doi: 10.1016/j.apenergy.2018.06.122
    [122]
    H. Liu, H. Pan, N. Wang, M. Z. Yousaf, H. H. Goh, and S. Rahman, “Robust under-frequency load shedding with electric vehicles under wind power and commute uncertainties,” IEEE Trans. Smart Grid, vol. 13, no. 5, pp. 3676–3687, Sept. 2022. doi: 10.1109/TSG.2022.3172726
    [123]
    T. Xu, G. Li, Z. Yu, J. Zhang, L. Wang, Y. Li, Y. Zhang, J. Luo, and D. Li, “Design and application of emergency coordination control system for multi-infeed HVDC receiving-end system coping with frequency stability problem,” Automat. Electr. Power Syst., vol. 41, no. 8, pp. 98–104, Apr. 2017.
    [124]
    V. Y. Singarao and V. S. Rao, “Frequency responsive services by wind generation resources in United States,” Renew. Sustain. Energy Rev., vol. 55, pp. 1097–1108, Mar. 2016. doi: 10.1016/j.rser.2015.11.011
    [125]
    R. Rosso, X. Wang, M. Liserre, X. Lu, and S. Engelken, “Grid-forming converters: Control approaches, grid-synchronization, and future trends—A review,” IEEE Open J. Ind. Appl., vol. 2, pp. 93–109, Apr. 2021. doi: 10.1109/OJIA.2021.3074028
    [126]
    Virtual Synchronous Machine—Part 1: General, GB/T 38983.1-2020, 2020.
    [127]
    C. He, X. He, H. Geng, H. Sun, and S. Xu, “Transient stability of low-inertia power systems with inverter-based generation,” IEEE Trans. Energy Convers., vol. 37, no. 4, pp. 2903–2912, Dec. 2022. doi: 10.1109/TEC.2022.3185623
    [128]
    M. J. Morshed, “A nonlinear coordinated approach to enhance the transient stability of wind energy-based power systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1087–1097, Jul. 2020. doi: 10.1109/JAS.2020.1003255
    [129]
    S. An, W. Qiu, Q. Pu, S. Chen, Y. Zheng, J. Duan, Q. Huang, and W. Yao, “Power system wideband oscillation estimation, localization, and mitigation,” IET Gener. Transm. Distrib., vol. 17, no. 11, pp. 2655–2666, Jun. 2023. doi: 10.1049/gtd2.12845
    [130]
    J. Khazaei, Z. Tu, and W. Liu, “Small-signal modeling and analysis of virtual inertia-based PV systems,” IEEE Trans. Energy Convers., vol. 35, no. 2, pp. 1129–1138, Jun. 2020. doi: 10.1109/TEC.2020.2973102

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(3)

    Article Metrics

    Article views (101) PDF downloads(41) Cited by()

    Highlights

    • Key challenges of large-scale integration of renewables into power systems
    • Modeling, analysis, and control of frequency stability in low-inertia power systems
    • Summarizes mechanism- and data-driven methods in frequency stability research
    • Explores potential energy resources and their roles in system frequency control
    • Provides a perspective on future research in low-inertia power systems

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return