IEEE/CAA Journal of Automatica Sinica
Citation: | L. Fu, S. Ling, D. Wu, M. Kang, F.-Y. Wang, and H. Sun, “Parallel seeds: From foundation models to foundation intelligence for agricultural sustainability,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 481–484, Mar. 2025. doi: 10.1109/JAS.2024.124914 |
[1] |
A. Ortiz-Bobea, T. R. Ault, C. M. Carrillo, R. G. Chambers, and D. B. Lobell, “Anthropogenic climate change has slowed global agricultural productivity growth,” Nature Climate Change, vol. 11, no. 4, pp. 306−312, 2021.
|
[2] |
B. Gu, X. Zhang, S. K. Lam, et al., “Cost-effective mitigation of nitrogen pollution from global croplands,” Nature, vol. 613, no. 7942, pp. 77−84, 2023.
|
[3] |
B. C. Y. Collard and D. J. Mackill, “Marker-assisted selection: An approach for precision plant breeding in the twenty-first century,” Philosophical Trans. Royal Society B: Biological Sciences, vol. 363, no. 1491, pp. 557−572, 2008.
|
[4] |
L. Fu, L. Zhang, E. Dollinger, Q. Peng, Q. Nie, and X. Xie, “Predicting transcription factor binding in single cells through deep learning,” Science Advances, vol. 6, no. 51, pp. 1–10, 2020.
|
[5] |
S. Nabwire, H. K. Suh, M. S. Kim, I. Baek, and B. K. Cho, “Review: Application of artificial intelligence in phenomics,” Sensors, vol. 21, no. 13, p. 4363, 2021.
|
[6] |
S. Nurk, S. Koren, A. Rhie, M. Rautiainen, and A. V. Bzikadze, “The complete sequence of a human genome,” Science, vol. 376, no. 6588, pp. 44−53, 2022.
|
[7] |
H. Sun, W. Jiao, K. Krause, et al., “Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar,” Nature Genetics, vol. 54, no. 3, pp. 342−348, 2022.
|
[8] |
Q. Zhao, Q. Feng, H. Lu, et al., “Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice,” Nature genetics, vol. 50, no. 2, pp. 278−284, 2018.
|
[9] |
M. Sheikh, F. Iqra, H. Ambreen, K. A. Pravin, M. Ikra, and Y. S. Chung, “Integrating artificial intelligence and high-throughput phenotyping for crop improvement,” J. Integrative Agriculture, vol. 23, no. 6, pp. 1787−1802, 2024.
|
[10] |
J. Liu, A. R. Fernie, and J. Yan, “Crop breeding From experience-based selection to precision design,” J. Plant Physiology, vol. 256, p. 153313, 2021.
|
[11] |
D. Wu, J. Xu, X. Dong, M. Liao, R. Wang, F. Nie, and X. Li, “GSPL: A succinct kernel model for group-sparse projections learning of multiview data,” in Proc. 13th Int. Joint Conf. Artificial Intelligence Organization, 2021, pp. 3185−3191.
|
[12] |
F. -Y. Wang, Q. Miao, L. Li, et al., “When does Sora show: The beginning of TAO to imaginative Intelligence and scenarios engineering,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 809−815, 2024.
|
[13] |
B. G. Hu, De Reffye, X. Zhao, and M. Z. Kang, “GreenLab: A new methodology towards plant functional-structural model-structural part,” in Proc. Plant Growth Modelling and Applications, 2003, pp. 21−35.
|
[14] |
M. Kang and F.-Y. Wang, “From parallel plants to smart plants: Intelligent control and management for plant growth,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 161−166, 2017.
|
[15] |
B. A. Yilma, H. Panetto, and Y. Naudet, “Systemic formalisation of cyber-physical-social system (CPSS): A systematic literature review,” Computers in Industry, vol. 129, p. 103458, 2021.
|
[16] |
F.-Y. Wang, “The metaverse of mind: Perspectives on DeSci for DeEco and DeSoc,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2043–2046. 2022.
|
[17] |
X. Wang, M. Kang, H. Sun, de Reffye, and F.-Y. Wang, “DeCASA in agriVerse: Parallel agriculture for smart villages in metaverses,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2055−2062, 2022.
|
[18] |
M. Kang, X. Wang, H. Wang, J. Hua, de Reffye, and F.-Y. Wang, “The development of AgriVerse: Past, present, and future,” IEEE Trans. Systems, Man and Cybern.: Systems, vol. 53, no. 6, pp. 3718−3727, 2023.
|