A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 5
May  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
S. Wang, Z. Wang, H. Dong, Y. Chen, and  G. Lu,  “Dynamic event-triggered quadratic nonfragile filtering for non-Gaussian systems: Tackling multiplicative noises and missing measurements,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1127–1138, May 2024. doi: 10.1109/JAS.2024.124338
Citation: S. Wang, Z. Wang, H. Dong, Y. Chen, and  G. Lu,  “Dynamic event-triggered quadratic nonfragile filtering for non-Gaussian systems: Tackling multiplicative noises and missing measurements,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1127–1138, May 2024. doi: 10.1109/JAS.2024.124338

Dynamic Event-Triggered Quadratic Nonfragile Filtering for Non-Gaussian Systems: Tackling Multiplicative Noises and Missing Measurements

doi: 10.1109/JAS.2024.124338
Funds:  This work was supported in part by the National Natural Science Foundation of China (61933007, U21A2019, U22A2044, 61973102, 62073180), the Natural Science Foundation of Shandong Province of China (ZR2021MF088), the Hainan Province Science and Technology Special Fund of China (ZDYF2022SHFZ105), the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
More Information
  • This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises, multiple missing measurements as well as the dynamic event-triggered transmission scheme. The multiple missing measurements are characterized through random variables that obey some given probability distributions, and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable. Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense. To this end, the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers, thus the original design issue is reformulated as that of the augmented system. Subsequently, we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters. With the aid of two well-defined matrix difference equations, we not only obtain upper bounds on filtering error covariances, but also minimize those bounds via carefully designing gain parameters. Finally, an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.


  • loading
  • [1]
    Y. S. Shmaliy, F. Lehmann, S. Zhao, and C. K. Ahn, “Comparing robustness of the Kalman, H, and UFIR filters,” IEEE Trans. Signal Processing, vol. 66, no. 13, pp. 3447–3458, 2018. doi: 10.1109/TSP.2018.2833811
    S. Sun, F. Peng, and H. Lin, “Distributed asynchronous fusion estimator for stochastic uncertain systems with multiple sensors of different fading measurement rates,” IEEE Trans. Signal Processing, vol. 66, no. 3, pp. 641–653, 2018. doi: 10.1109/TSP.2017.2770102
    R. Caballero-Águila, A. Hermoso-Carazo, and J. Linares-Pérez, “Networked fusion estimation with multiple uncertainties and time-correlated channel noise,” Information Fusion, vol. 54, pp. 161–171, 2020. doi: 10.1016/j.inffus.2019.07.008
    W. Chen, D. Ding, H. Dong, and G. Wei, “Distributed resilient filtering for power systems subject to denial-of-service attacks,” IEEE Trans. Syst.,Man,and Cyber.-Syst., vol. 49, no. 8, pp. 1688–1697, 2019. doi: 10.1109/TSMC.2019.2905253
    H. Darvishi, D. Ciuonzo, E. R. Eide, and P. S. Rossi, “Sensor-fault detection, isolation and accommodation for digital twins via modular data-driven architecture,” IEEE Sensors J., vol. 21, no. 4, pp. 4827–4838, 2021. doi: 10.1109/JSEN.2020.3029459
    S. Dong, M. Liu, and Z.-G. Wu, “A survey on hidden Markov jump systems: Asynchronous control and filtering,” Int. J. Systems Science, vol. 54, no. 6, pp. 1360–1376, 2023. doi: 10.1080/00207721.2023.2171710
    S. Feng, X. Li, S. Zhang, Z. Jian, H. Duan, and Z. Wang, “A review: State estimation based on hybrid models of Kalman filter and neural network,” Systems Science &Control Engineering, vol. 11, no. 1, 2023.
    X. Ge, Q.-L. Han, X.-M. Zhang, L. Ding, and F. Yang, “Distributed event-triggered estimation over sensor networks: A survey,” IEEE Trans. Cyber., vol. 50, no. 3, pp. 1306–1320, 2020. doi: 10.1109/TCYB.2019.2917179
    Y. Jin, X. Ma, X. Meng, and Y. Chen, “Distributed fusion filtering for cyber-physical systems under round-robin protocol: A mixed H2/H framework,” Int. J. Systems Science, vol. 54, no. 8, pp. 1661–1675, 2023. doi: 10.1080/00207721.2023.2208130
    Y. Xu, W. Lv, W. Lin, R. Lu, and D. E. Quevedo, “On extended state estimation for nonlinear uncertain systems with round-robin protocol,” Automatica, vol. 138, p. 110154, 2022. doi: 10.1016/j.automatica.2021.110154
    Z. Gu, P. Shi, D. Yue, and Z. Ding, “Decentralized adaptive event-triggered H filtering for a class of networked nonlinear interconnected systems,” IEEE Trans. Cyber., vol. 49, no. 5, pp. 1570–1579, 2018.
    Q. Liu, Z. Wang, Q.-L. Han, and C. Jiang, “Quadratic estimation for discrete time-varying non-Gaussian systems with multiplicative noises and quantization effects,” Automatica, vol. 113, p. 108714, 2020. doi: 10.1016/j.automatica.2019.108714
    Z.-H. Pang, L.-Z. Fan, K. Liu, and G.-P. Liu, “Detection of stealthy false data injection attacks against networked control systems via active data modification,” Information Sciences, vol. 546, pp. 192–205, 2021. doi: 10.1016/j.ins.2020.06.074
    W. Wang, C. Han, and X. Wang, “Optimal H2 filtering for measurement-delay systems with multiplicative noise and sampled data,” Optimal Control Applications and Methods, vol. 42, no. 4, pp. 987–1000, 2021. doi: 10.1002/oca.2713
    Y.-A. Wang, B. Shen, L. Zou, and Q.-L. Han, “A survey on recent advances in distributed filtering over sensor networks subject to communication constraints,” Int. J. Network Dynamics and Intelligence, vol. 2, no. 2, p. 7, 2023.
    G. Yang and J. Wang, “Robust nonfragile Kalman filtering for uncertain linear systems with estimator gain uncertainty,” IEEE Trans. Autom. Control, vol. 46, no. 2, pp. 343–348, 2001. doi: 10.1109/9.905707
    Y. Zhao, X. He, L. Ma, and H. Liu, “Unbiasedness-constrained least squares state estimation for time-varying systems with missing measurements under round-robin protocol,” Int. J. Systems Science, vol. 53, no. 9, pp. 1925–1941, 2022. doi: 10.1080/00207721.2022.2031338
    W. Wu, “Target tracking with glint noise,” IEEE Trans. Aerospace and Electronic Systems, vol. 29, no. 1, pp. 174–185, 1993. doi: 10.1109/7.249123
    H. Geng, Z. Wang, Y. Cheng, F. E. Alsaadi, and A. M. Dobaie, “State estimation under non-Gaussian Lévy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach,” Signal Processing, vol. 154, pp. 120–128, 2019. doi: 10.1016/j.sigpro.2018.08.005
    T. Ahmad and N. Senroy, “An information theoretic approach to power-substation level dynamic state estimation with non-Gaussian noise,” IEEE Trans. Power Systems, vol. 35, no. 2, pp. 1642–1645, 2020. doi: 10.1109/TPWRS.2020.2965795
    F. Carravetta, A. Germani, and N. Raimondi, “Polynomial filtering of discrete-time stochastic linear systems with multiplicative state noise,” IEEE Trans. Autom. Control, vol. 42, no. 8, pp. 1106–1126, 1997. doi: 10.1109/9.618240
    A. Germani, C. Manes, and P. Palumbo, “Polynomial filtering for stochastic non-Gaussian descriptor systems,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 51, no. 8, pp. 1561–1576, 2004. doi: 10.1109/TCSI.2004.831436
    Y. Liu, Z. Wang, and D. Zhou, “Quantised polynomial filtering for nonlinear systems with missing measurements,” Int. J. Control, vol. 91, no. 10, pp. 2250–2260, 2018. doi: 10.1080/00207179.2017.1337933
    B. Qu, Z. Wang, B. Shen, and H. Dong, “Decentralized dynamic state estimation for multi-machine power systems with non-Gaussian noises: Outlier detection and localization,” Automatica, vol. 153, p. 111010, 2023. doi: 10.1016/j.automatica.2023.111010
    C. Shan, W. Zhou, H. Shan, and L. Liu, “A new variational Bayesian-based Kalman filter with random measurement delay and non-Gaussian noises,” Int. J. Control,Automation and Systems, vol. 20, no. 8, pp. 2594–2605, 2022. doi: 10.1007/s12555-021-0467-4
    D. Xu, C. Shen, and F. Shen, “A robust particle filtering algorithm with non-Gaussian measurement noise using student-t distribution,” IEEE Signal Processing Letters, vol. 21, no. 1, pp. 30–34, 2014. doi: 10.1109/LSP.2013.2289975
    F. Cacace, F. Conte, A. Germani, and G. Palombo, “Feedback quadratic filtering,” Automatica, vol. 82, pp. 158–164, 2017. doi: 10.1016/j.automatica.2017.04.046
    A. Fasano, A. Germani, and A. Monteriù, “Reduced-order quadratic Kalman-like filtering of non-Gaussian systems,” IEEE Trans. Autom. Control, vol. 58, no. 7, pp. 1744–1757, 2013. doi: 10.1109/TAC.2013.2246474
    R. Caballero-Águila, I. García-Garrido, and J. Linares-Pérez, “Quadratic estimation problem in discrete-time stochastic systems with random parameter matrices,” Applied Mathematics and Computation, vol. 273, pp. 308–320, 2016. doi: 10.1016/j.amc.2015.10.005
    R. Lv, Y. Cai, and X. Dong, “An adaptive nonlinear filter with missing measurements compensation for manoeuvring target tracking,” IET Control Theory &Applications, vol. 16, pp. 514–529, 2022.
    L. Zou, Z. Wang, B. Shen, and H. Dong, “Moving horizon estimation over relay channels: Dealing with packet losses,” Automatica, vol. 155, p. 111079, 2023. doi: 10.1016/j.automatica.2023.111079
    J. Hu, J. Li, Y. Kao, and D. Chen, “Optimal distributed filtering for nonlinear saturated systems with random access protocol and missing measurements: The uncertain probabilities case,” Applied Mathematics and Computation, vol. 418, p. 126844, 2022. doi: 10.1016/j.amc.2021.126844
    L. Hu, Z. Wang, Q.-L. Han, and X. Liu, “Event-based input and state estimation for linear discrete time-varying systems,” Int. J. Control, vol. 91, no. 1, pp. 101–113, 2018. doi: 10.1080/00207179.2016.1269205
    C. Li, Z. Wang, W. Song, S. Zhao, J. Wang, and J. Shan, “Resilient unscented Kalman filtering fusion with dynamic event-triggered scheme: Applications to multiple unmanned aerial vehicles,” IEEE Trans. Control Systems Technology, vol. 31, no. 1, pp. 370–381, 2023. doi: 10.1109/TCST.2022.3180942
    Y. Sun, X. Tian, and G. Wei, “Finite-time distributed resilient state estimation subject to hybrid cyber-attacks: A new dynamic event-triggered case,” Int. J. Systems Science, vol. 53, no. 13, pp. 2832–2844, 2022. doi: 10.1080/00207721.2022.2083256
    N. Zhao, P. Shi, W. Xing, and C. P. Lim, “Resilient adaptive event-triggered fuzzy tracking control and filtering for nonlinear networked systems under denial-of-service attacks,” IEEE Trans. Fuzzy Systems, vol. 30, no. 8, pp. 3191–3201, 2022. doi: 10.1109/TFUZZ.2021.3106674
    M. Zhong, X. Zhu, T. Xue, and L. Zhang, “An overview of recent advances in model-based event-triggered fault detection and estimation,” Int. J. Systems Science, vol. 54, no. 4, pp. 929–943, 2023. doi: 10.1080/00207721.2022.2146990
    K. Zhu, Z. Wang, H. Dong, and G. Wei, “Set-membership filtering for two-dimensional systems with dynamic event-triggered mechanism,” Automatica, vol. 143, p. 110416, 2022. doi: 10.1016/j.automatica.2022.110416
    W. Chen, Z. Wang, D. Ding, G. Ghinea, and H. Liu, “Distributed formation-containment control for discrete-time multiagent systems under dynamic event-triggered transmission scheme,” IEEE Trans. Syst.,Man,and Cyber.: Syst., vol. 53, no. 2, pp. 1308–1319, 2023. doi: 10.1109/TSMC.2022.3197555
    Q. Li, Z. Wang, N. Li, and W. Sheng, “A dynamic event-triggered approach to recursive filtering for complex networks with switching topologies subject to random sensor failures,” IEEE Trans. Neural Networks and Learning Systems, vol. 31, no. 10, pp. 4381–4388, 2020. doi: 10.1109/TNNLS.2019.2951948
    Y. Liu, B. Shen, and H. Shu, “Finite-time resilient H state estimation for discrete-time delayed neural networks under dynamic event-triggered mechanism,” Neural Networks, vol. 121, pp. 356–365, 2020. doi: 10.1016/j.neunet.2019.09.006
    Y. Niu, L. Sheng, M. Gao, and D. Zhou, “Dynamic event-triggered state estimation for continuous-time polynomial nonlinear systems with external disturbances,” IEEE Trans. Industrial Informatics, vol. 17, no. 6, pp. 3962–3970, 2021. doi: 10.1109/TII.2020.3015004
    X. Ge, Q.-L. Han, and Z. Wang, “A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks,” IEEE Trans. Cyber., vol. 49, no. 1, pp. 171–183, 2019. doi: 10.1109/TCYB.2017.2769722
    Z. Lian, P. Shi, and Y. Sun, “Design on nonfragile fuzzy filter for nonlinear time-delay systems,” Int. J. Adaptive Control and Signal Processing, vol. 34, no. 2, pp. 248–265, 2020. doi: 10.1002/acs.3081
    L. Liu, L. Ma, J. Zhang, and Y. Bo, “Distributed non-fragile set-membership filtering for nonlinear systems under fading channels and bias injection attacks,” Int. J. Systems Science, vol. 52, no. 6, pp. 1192–1205, 2021. doi: 10.1080/00207721.2021.1872118
    L. Wang, S. Liu, Y. Zhang, D. Ding, and X. Yi, “Non-fragile l2l state estimation for time-delayed artificial neural networks: An adaptive event-triggered approach,” Int. J. Systems Science, vol. 53, no. 10, pp. 2247–2259, 2022. doi: 10.1080/00207721.2022.2049919
    S. Wang, Z. Wang, H. Dong, and Y. Chen, “A dynamic event-triggered approach to recursive nonfragile filtering for complex networks with sensor saturations and switching topologies,” IEEE Trans. Cyber., vol. 52, no. 10, pp. 11041–11054, 2022. doi: 10.1109/TCYB.2021.3049461
    J. Song, Z. Wang, Y. Niu, and H. Dong, “Genetic-algorithm-assisted sliding-mode control for networked state-saturated systems over hidden Markov fading channels,” IEEE Trans. Cyber., vol. 51, no. 7, pp. 3664–3675, 2021. doi: 10.1109/TCYB.2020.2980109


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (191) PDF downloads(50) Cited by()


    • he quadratic non-Gaussian nonfragile filter is devised firstly under under MNs, DETS, and MMMs
    • The statistics of augmented noises and involved random variables are revealed
    • A new quadratic nonfragile filter is designed by minimizing upper bounds on filtering error covariances


    DownLoad:  Full-Size Img  PowerPoint