IEEE/CAA Journal of Automatica Sinica
Citation: | F. Tatari and H. Modares, “Deterministic and stochastic fixed-time stability of discrete-time autonomous systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 945–956, Apr. 2023. doi: 10.1109/JAS.2023.123405 |
[1] |
S. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, Feb.–Mar. 2000. doi: 10.1137/S0363012997321358
|
[2] |
W. S. Chen and L. C. Jiao, “Finite-time stability theorem of stochastic nonlinear systems,” Automatica, vol. 46, no. 12, pp. 2105–2108, Dec. 2010. doi: 10.1016/j.automatica.2010.08.009
|
[3] |
J. L. Yin, S. Khoo, Z. H. Man, and X. H. Yu, “Finite-time stability and instability of stochastic nonlinear systems,” Automatica, vol. 47, no. 12, pp. 2671–2677, Dec. 2011. doi: 10.1016/j.automatica.2011.08.050
|
[4] |
T. Rajpurohit and W. M. Haddad, “Stochastic finite-time partial stability, partial-state stabilization, and finite-time optimal feedback control,” Math. Control Signals Syst., vol. 29, no. 2, p. 10, Jun. 2017. doi: 10.1007/s00498-017-0194-9
|
[5] |
W. M. Haddad and J. Lee, “Finite-time stability of discrete autonomous systems,” Automatica, vol. 122, p. 109282, Dec. 2020. doi: 10.1016/j.automatica.2020.109282
|
[6] |
S. H. Li, H. B. Du, and X. H. Yu, “Discrete-time terminal sliding mode control systems based on Euler’s discretization,” IEEE Trans. Autom. Control, vol. 59, no. 2, pp. 546–552, Feb. 2014. doi: 10.1109/TAC.2013.2273267
|
[7] |
G. H. Sun, Z. Q. Ma, and J. Y. Yu, “Discrete-time fractional order terminal sliding mode tracking control for linear motor,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3386–3394, Apr. 2018. doi: 10.1109/TIE.2017.2748045
|
[8] |
Q. M. Zhao, H. Xu, and S. Jagannathan, “Neural network-based finite-horizon optimal control of uncertain affine nonlinear discrete-time systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 3, pp. 486–499, Mar. 2015. doi: 10.1109/TNNLS.2014.2315646
|
[9] |
L. Liu, Y. J. Liu, and S. C. Tong, “Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems,” IEEE Trans. Cybern., vol. 49, no. 7, pp. 2536–2545, Jul. 2019. doi: 10.1109/TCYB.2018.2828308
|
[10] |
Y. Liu, X. Liu, Y. W. Jing, X. Y. Chen, and J. L. Qiu, “Direct adaptive preassigned finite-time control with time-delay and quantized input using neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 4, pp. 1222–1231, Apr. 2020. doi: 10.1109/TNNLS.2019.2919577
|
[11] |
Y. M. Li, T. T. Yang, and S. C. Tong, “Adaptive neural networks finite-time optimal control for a class of nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 4451–4460, Nov. 2020. doi: 10.1109/TNNLS.2019.2955438
|
[12] |
V. Adetola and M. Guay, “Finite-time parameter estimation in adaptive control of nonlinear systems,” IEEE Trans. Autom. Control, vol. 53, no. 3, pp. 807–811, Apr. 2008. doi: 10.1109/TAC.2008.919568
|
[13] |
L. Zhao, J. H. Zhi, N. N. Yin, Y. Chen, J. L. Li, and J. L. Liu, “Performance improvement of finite time parameter estimation with relaxed persistence of excitation condition,” J. Electr. Eng. &Technol., vol. 14, no. 2, pp. 931–939, Mar. 2019.
|
[14] |
C. G. Yang, Y. M. Jiang, W. He, J. Na, Z. J. Li, and B. Xu, “Adaptive parameter estimation and control design for robot manipulators with finite-time convergence,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8112–8123, Oct. 2018. doi: 10.1109/TIE.2018.2803773
|
[15] |
J. Wang, D. Efimov, and A. A. Bobtsov, “On robust parameter estimation in finite-time without persistence of excitation,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1731–1738, Apr. 2020. doi: 10.1109/TAC.2019.2932960
|
[16] |
J. Wang, D. Efimov, and A. A. Bobtsov, “Finite-time parameter estimation without persistence of excitation,” in Proc. 18th European Control Conf., Naples, Italy, 2019, pp. 2963–2968.
|
[17] |
A. Vahidi-Moghaddam, M. Mazouchi, and H. Modares, “Memory-augmented system identification with finite-time convergence,” IEEE Control Syst. Lett., vol. 5, no. 2, pp. 571–576, Apr. 2020.
|
[18] |
D. Lehrer, V. Adetola, and M. Guay, “Parameter identification methods for non-linear discrete-time systems,” in Proc. American Control Conf., Baltimore, USA, 2010, pp. 2170–2175.
|
[19] |
F. Tatari, C. Panayiotou, and M. Polycarpou, “Finite-time identification of unknown discrete-time nonlinear systems using concurrent learning,” in Proc. 60th IEEE Conf. Decision and Control, Austin, USA, 2021, pp. 2306–2311.
|
[20] |
F. Tatari, C. Panayiotou, and M. Polycarpou, “Nonlinear discrete-time system identification without persistence of excitation: Finite-time concurrent learning methods,” arXiv preprint arXiv: 2112.07765, 2021.
|
[21] |
F. Tatari, H. Modares, C. Panayiotou, and M. Polycarpou, “Finite-time distributed identification for nonlinear interconnected systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1188–1199, Jul. 2022. doi: 10.1109/JAS.2022.105683
|
[22] |
A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, Aug. 2012. doi: 10.1109/TAC.2011.2179869
|
[23] |
J. Yu, S. Yu, J. Li, and Y. Yan, “Fixed-time stability theorem of stochastic nonlinear systems,” Int. J. Control, vol. 92, no. 9, pp. 2194–2200, 2019.
|
[24] |
Y. Zhang and F. Wang, “Observer-based fixed-time neural control for a class of nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7, pp. 2892–2902, Jul. 2022. doi: 10.1109/TNNLS.2020.3046865
|
[25] |
J. Liu, Y. L. Zhang, Y. Yu, and C. Y. Sun, “Fixed-time leader-follower consensus of networked nonlinear systems via event/self-triggered control,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 5029–5037, Nov. 2020. doi: 10.1109/TNNLS.2019.2957069
|
[26] |
J. Liu, Y. Yu, H. B. He, and C. Y. Sun, “Team-triggered practical fixed-time consensus of double-integrator agents with uncertain disturbance,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3263–3272, Jun. 2021. doi: 10.1109/TCYB.2020.2999199
|
[27] |
K. Garg, E. Arabi, and D. Panagou, “Prescribed-time convergence with input constraints: A control lyapunov function based approach,” in Proc. American Control Conf., Denver, USA, 2020, pp. 962–967.
|
[28] |
I. S. Dimanidis, C. Bechlioulis, and G. A. Rovithakis, “Output feedback approximation-free prescribed performance tracking control for uncertain MIMO nonlinear systems,” IEEE Trans. Autom. Control, vol. 65, no. 12, pp. 5058–5069, Dec. 2020. doi: 10.1109/TAC.2020.2970003
|
[29] |
H. F. Min, S. Y. Xu, B. Y. Zhang, Q. Ma, and D. M. Yuan, “Fixed-time Lyapunov criteria and state-feedback controller design for stochastic nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1005–1014, Jun. 2022. doi: 10.1109/JAS.2022.105539
|
[30] |
H. W. Ren, Z. Peng, and Y. Gu, “Fixed-time synchronization of stochastic memristor-based neural networks with adaptive control,” Neural Netw., vol. 130, pp. 165–175, Oct. 2020. doi: 10.1016/j.neunet.2020.07.002
|
[31] |
L. Zhao, Y. Sun, H. Dai, and D. Zhao, “Stochastic fixed-time consensus problem of multi-agent systems with fixed and switching topologies,” Int. J. Control, vol. 94, no. 10, pp. 2811–2821, 2021.
|
[32] |
B. D. Ning, Q. L. Han, and L. Ding, “Distributed finite-time secondary frequency and voltage control for islanded microgrids with communication delays and switching topologies,” IEEE Trans. Cybern., vol. 51, no. 8, pp. 3988–3999, Aug. 2021. doi: 10.1109/TCYB.2020.3003690
|
[33] |
B. D. Ning, Q. L. Han, Z. Y. Zuo, L. Ding, Q. Lu, and X. H. Ge, “Fixed-time and prescribed-time consensus control of multiagent systems and its applications: A survey of recent trends and methodologies,” IEEE Trans. Ind. Inf., vol. 19, no. 8, pp. 1121–1135, Feb. 2023.
|
[34] |
M. V. Basin, Y u, and Y. B. Shtessel, “Hypersonic missile adaptive sliding mode control using finite- and fixed-time observers,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 930–941, Jan. 2018. doi: 10.1109/TIE.2017.2701776
|
[35] |
F. Z. Gao, H. Y. Chen, J. C. Huang, and Y. Q. Wu, “A general fixed-time observer for lower-triangular nonlinear systems,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 6, pp. 1992–1996, Jun. 2021.
|
[36] |
J. C. Zhang, D. Z. Xu, X. H. Li, and Y. Wang, “Singular system full-order and reduced-order fixed-time observer design,” IEEE Access, vol. 7, pp. 112113–112119, Aug. 2019. doi: 10.1109/ACCESS.2019.2935238
|
[37] |
F. Zhang and J. J. Yu, “Stabilization of USVs under mismatched condition based on fixed-time observer,” IEEE Access, vol. 8, pp. 195305–195316, Jan. 2020. doi: 10.1109/ACCESS.2020.3034237
|
[38] |
J. K. Ni, L. Liu, M. Chen, and C. X. Liu, “Fixed-time disturbance observer design for Brunovsky systems,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 65, no. 3, pp. 341–345, Mar. 2018.
|
[39] |
X. Yu, P. Li, and Y. M. Zhang, “The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4135–4144, May 2018. doi: 10.1109/TIE.2017.2772192
|
[40] |
M. Noack, J. G. Rueda-Escobedo, J. Reger, and J. A. Moreno, “Fixed-time parameter estimation in polynomial systems through modulating functions,” in Proc. IEEE 55th Conf. Decision and Control, Las Vegas, USA, 2016, pp. 2067–2072.
|
[41] |
C. Z. Zhu, Y. M. Jiang, and C. G. Yang, “Online parameter estimation for uncertain robot manipulators with fixed-time convergence,” in Proc. 15th IEEE Conf. Industrial Electronics and Applications, Kristiansand, Norway, 2020, pp. 1808–1813.
|
[42] |
J. Wang, D. Efimov, S. Aranovskiy, and A. A. Bobtsov, “Fixed-time estimation of parameters for non-persistent excitation,” Eur. J. Control, vol. 55, pp. 24–32, Sept. 2020. doi: 10.1016/j.ejcon.2019.07.005
|
[43] |
D. Efimov, S. Aranovskiy, A. A. Bobtsov, and T. Raïssi, “On fixed-time parameter estimation under interval excitation,” in Proc. European Control Conf., St. Petersburg, Russia, 2020, pp. 246–251.
|
[44] |
H. Ríos, D. Efimov, J. A. Moreno, W. Perruquetti, and J. G. Rueda-Escobedo, “Time-varying parameter identification algorithms: Finite and fixed-time convergence,” IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3671–3678, Jul. 2017. doi: 10.1109/TAC.2017.2673413
|
[45] |
F. Tatari, M. Mazouchi, and H. Modares, “Fixed-time system identification using concurrent learning,” IEEE Trans. Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2021.3125145, 2021.
|
[46] |
R. Hamrah, A. K. Sanya, and S. P. Viswanathan, “Discrete finite-time stable position tracking control of unmanned vehicles,” in Proc. IEEE 58th Conf. Decision and Control, Nice, France, 2019, pp. 7025–7030.
|
[47] |
W. M. Haddad and J. Lee, “Lyapunov theorems for semistability of discrete-time stochastic systems with application to network consensus with random communication noise,” in Proc. 29th Mediterranean Conf. Control and Automation, Bari, Italy, 2021, pp. 892–897.
|
[48] |
J. Lee, W. M. Haddad, and S. P. Bhat, “Finite time stability of discrete-time stochastic dynamical systems,” in Proc. 60th IEEE Conf. Decision and Control, Austin, USA, 2021, pp. 6646–6651.
|
[49] |
H. J. Kushner, Stochastic Stability and Control. New York, USA: Academic Press, 1967.
|
[50] |
B. D. Ning, Q. L. Han, and Z. Y. Zuo, “Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach,” Automatica, vol. 105, pp. 406–414, Jul. 2019. doi: 10.1016/j.automatica.2019.04.013
|
[51] |
O. M. Scokaert, J. B. Rawlings, and E. S. Meadows, “Discrete-time stability with perturbations: Application to model predictive control,” Automatica, vol. 33, no. 3, pp. 463–470, Mar. 1997. doi: 10.1016/S0005-1098(96)00213-0
|
[52] |
Y. Z. Qin, M. Cao, and B. D. O. Anderson, “Lyapunov criterion for stochastic systems and its applications in distributed computation,” IEEE Trans. Autom. Control, vol. 65, no. 2, pp. 546–560, Feb. 2020. doi: 10.1109/TAC.2019.2910948
|