A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 5
May  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
J. Y. Lei, Y.-X. Li, and S. C. Tong, “Distributed adaptive asymptotic tracking of 2-D vehicular platoon systems with actuator faults and spacing constraints,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1352–1354, May 2023. doi: 10.1109/JAS.2023.123150
Citation: J. Y. Lei, Y.-X. Li, and S. C. Tong, “Distributed adaptive asymptotic tracking of 2-D vehicular platoon systems with actuator faults and spacing constraints,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1352–1354, May 2023. doi: 10.1109/JAS.2023.123150

Distributed Adaptive Asymptotic Tracking of 2-D Vehicular Platoon Systems With Actuator Faults and Spacing Constraints

doi: 10.1109/JAS.2023.123150
More Information
  • loading
  • [1]
    Y. Li, C. Tang, S. Peeta, and Y. Wang, “Nonlinear consensus-based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays,” IEEE Trans. Intelligent Transportation Syst., vol. 20, no. 6, pp. 2209–2219, Jun. 2019. doi: 10.1109/TITS.2018.2865546
    [2]
    G. Guo and D. Li, “Adaptive sliding mode control of vehicular platoons with prescribed tracking performance,” IEEE Trans. Vehicular Technology, vol. 68, no. 8, pp. 7511–7520, Aug. 2019. doi: 10.1109/TVT.2019.2921816
    [3]
    X. Ge, S. Xiao, Q.-L. Han, X. M. Zhang, and D. Ding, “Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 31–46, Jan. 2022. doi: 10.1109/JAS.2021.1004060
    [4]
    Z. Zuo, C. Liu, Q.-L. Han, and J. Song, “Unmanned aerial vehicles: Control methods and future challenges,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 601–614, Apr. 2022. doi: 10.1109/JAS.2022.105410
    [5]
    J. Wang, X. Luo, W. Wong, and X. Guan, “Specified-time vehicular platoon control with flexible safe distance constraint,” IEEE Trans. Vehicular Technology, vol. 68, no. 11, pp. 10489–10503, Nov. 2019. doi: 10.1109/TVT.2019.2939558
    [6]
    X. Ge, Q.-L. Han, J. Wang, and X. M. Zhang, “A scalable adaptive approach to multi-vehicle formation control with obstacle avoidance,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 990–1004, Jun. 2022. doi: 10.1109/JAS.2021.1004263
    [7]
    X. G. Guo, W. D. Xu, J. L. Wang, and J. H. Park, “Distributed neuroadaptive fault-tolerant sliding-mode control for 2-D plane vehicular platoon systems with spacing constraints and unknown direction faults,” Automatica, vol. 129, p. 109675, 2021. doi: 10.1016/j.automatica.2021.109675
    [8]
    Z. Zhang, S. Xu, and B. Zhang, “Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1336–1341, May 2014. doi: 10.1109/TAC.2013.2289704
    [9]
    Z. Zhang, S. Xu, and B. Zhang, “Exact tracking control of nonlinear systems with time delays and dead-zone input,” Automatica, vol. 52, pp. 272–276, 2015. doi: 10.1016/j.automatica.2014.11.013
    [10]
    W. Wang, J. Huang, C. Wen, and H. Fan, “Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots,” Automatica, vol. 4, no. 50, pp. 1254–1263, 2014.
    [11]
    S. Y. Xiao and J. X. Dong, “Distributed fault-tolerant containment control for nonlinear multi-agent systems under directed network topology via hierarchical approach,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 806–816, Apr. 2021. doi: 10.1109/JAS.2021.1003928
    [12]
    X. Jin, X. Zhao, J. Yu, X. Wu, and J. Chi, “Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learning strategy,” Neural Networks, vol. 121, pp. 474–483, 2020. doi: 10.1016/j.neunet.2019.09.028
    [13]
    H. Wang, W. Bai, and P. X. Liu, “Finite-time adaptive fault-tolerant control for nonlinear systems with multiple faults,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1417–1427, Nov. 2019. doi: 10.1109/JAS.2019.1911765
    [14]
    G. Guo, P. Li, and L. Y. Hao, “Adaptive fault-tolerant control of platoons with guaranteed traffic flow stability,” IEEE Trans. Vehicular Technology, vol. 69, no. 7, pp. 6916–6927, Jul. 2020. doi: 10.1109/TVT.2020.2990279
    [15]
    C. Pan, Y. Chen, and I. Ali, “Adaptive fault-tolerant control for autonomous vehicle platoon against fault,” in Proc. CAA Symp. Fault Detection, Supervision, Safety Technical Processes, 2021, pp. 1–5.
    [16]
    L. Y. Hao, H. Zhang, H. Li, and T. S. Li, “Sliding mode fault-tolerant control for unmanned marine vehicles with signal quantization and time-delay,” Ocean Engineering, vol. 215, p. 107882, 2020. doi: 10.1016/j.oceaneng.2020.107882
    [17]
    Z. T. Ding, “Adaptive consensus output regulation of a class of nonlinear systems with unknown high-frequency gain,” Automatica, vol. 51, no. 7, pp. 348–355, 2015.
    [18]
    J. J. Slotine and W. Li. “Applied nonlinear control,” in Englewood Cliffs, New Jersey, USA: Prentice Hall, 1991, vol. 199, no. 1, pp. 1–461.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (247) PDF downloads(54) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return