IEEE/CAA Journal of Automatica Sinica
Citation:  I. Birs, C. Muresan, D. Copot, and C. Ionescu, “Model identification and control of electromagnetic actuation in continuous casting process with improved quality,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 203–215, Jan. 2023. doi: 10.1109/JAS.2023.123027 
This paper presents an original theoretical framework to model steel material properties in continuous casting line process. Specific properties arising from nonNewtonian dynamics are herein used to indicate the natural convergence of distributed parameter systems to fractional order transfer function models. Data driven identification from a real continuous casting line is used to identify model of the electromagnetic actuator device to control flow velocity of liquid steel. To ensure product specifications, a fractional order control is designed and validated on the system. A projection of the closed loop performance onto the quality assessment at end production line is also given in this paper.
[1] 
B. G. Thomas, “Review on modeling and simulation of continuous casting,” Steel Research Int., vol. 89, p. 1700312, 2018.

[2] 
M. Jeyakumar, M. Hamed, and S. Shankar, “Rheology of liquid metals and alloys,” Journal of NonNewtonian Fluid Mechanics, vol. 166, no. 14, pp. 831–838, 2011.

[3] 
R. Golani, V. Singh, S. K. Ajmani, and R. Ranjan, “Investigation of surface flow velocity and vortex formation flow patterns in continuous slab casting mold through physical modelling,” 2015, pp. 30–36.

[4] 
H. Xiao, S. xiang Li, P. Wang, H. Y. Tang, and J. Q. Zhang, “Study on the inmold flow behavior driven by a subsurface electromagnetic stirring for if steel slab casting,” vol. 5, 2021, pp. 590–601.

[5] 
X. Deng, C. Ji, Y. Cui, L. Li, X. Yin, Y. Yang, and A. McLean, “Flow pattern control in continuous slab casting moulds: Physical modelling and plant trials,” Ironmaking and Steelmaking, vol. 44, pp. 461–471, 2017. doi: 10.1080/03019233.2016.1215666

[6] 
I. Birs, C. Muresan, D. Copot, I. Nascu, and C. Ionescu, “Identification for control of suspended objects in nonnewtonian fluids,” Fractional Calculus and Applied Analysis, vol. 22, pp. 1378–1394, 2020.

[7] 
K. Jin, S. Vanka, R. Agarwal, and B. Thomas, “GPU accelerated simulations of threedimensional flow of powerlaw fluids in a driven cube,” Int. Journal of Computational Fluid Dynamics, vol. 31, no. 1, pp. 36–56, 2017. doi: 10.1080/10618562.2016.1270449

[8] 
Z. Wang, B. Mao, R. Zhu, X. Bai, and X. Han, “Fractional maxwell model for oscillating flow of a viscoelastic elastomer shock absorber,” Binggong Xuebao/Acta Armamentarii, vol. 41, pp. 984–995, 2020.

[9] 
Y. Carrera, G. A. de la Rosa, E. J. VernonCarter, and J. AlvarezRamirez, “A fractionalorder maxwell model for nonnewtonian fluids,” Physica A: Statistical Mechanics and its Applications, vol. 482, pp. 276–285, 2017. doi: 10.1016/j.physa.2017.04.085

[10] 
C. Ionescu and J. F. Kelly, “Fractional calculus for respiratory mechanics: Power law impedance, viscoelasticity, and tissue heterogeneity,” Chaos,Solitons and Fractals, vol. 102, pp. 433–440, 2017. doi: 10.1016/j.chaos.2017.03.054

[11] 
D. Baleanu and R. P. Agarwal, “Fractional calculus in the sky,” p. 117, 2021.

[12] 
V. Kiryakova, “A guide to special functions in fractional calculus,” Mathematics, vol. 9, p. 106, 2021.

[13] 
G. Failla and M. Zingales, “Advanced materials modelling via fractional calculus: Challenges and perspectives,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 378, p. 2172, 2020.

[14] 
C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu, FractionalOrder Systems and Control: Fundamentals and Applications. Springer, 2010.

[15] 
J. Sabatier, P. Lanusse, P. Melchior, and A. Oustaloup, Fractional Order Differentiation and Robust Control Design. Springer, 2015.

[16] 
F. Padula and A. Visioli, Advances in Robust Fractional Control. Springer, 2015.

[17] 
A. Visioli, Practical PID Control. Springer, 2006.

[18] 
R. Vilanova and A. Visioli, PID Control in the Third Millennium. Springer, 2012.

[19] 
I. Birs, C. Muresan, I. Nascu, and C. Ionescu, “A survey of recent advances in fractional order control for time delay systems,” IEEE Access, vol. 7, pp. 30951–30965, 2019. doi: 10.1109/ACCESS.2019.2902567

[20] 
O. Lefevre, “Arcelormittal – Annual report 2020,” 2020, Accessed: 212021.

[21] 
S. Louhenkilpi, “Chapter 1.8 – Continuous casting of steel,” in Treatise on Process Metallurgy, S. Seetharaman, Ed. Boston: Elsevier, 2014, pp. 373−434.

[22] 
J.F. Domgin, M. Anderhuber, M. De Doncker, and A. De Paepe, “Optimization of an electromagnetic technology in arcelormittal gent for improving products quality in steel industry,” Journal for Manufacturing Science and Production, vol. 15, no. 1, pp. 105–117, 2015. doi: 10.1515/jmsp20140043

[23] 
M. De Doncker and J. F. Domgin, “Reduction of slivers by the use of an electromagnetic actuator,” Metallurgical Research and Technology, vol. 112, 2015.

[24] 
S.M. Cho and B. G. Thomas, “Electromagnetic forces in continuous casting of steel slabs,” Metals, vol. 9, no. 4, p. 471, 2019. doi: 10.3390/met9040471

[25] 
K. Dekemele, C.M. Ionescu, M. De Doncker, and R. De Keyser, “Closed loop control of an electromagnetic stirrer in the continuous casting process,” in Proc. European Control Conf., 2016, pp. 61–66.

[26] 
S. Bouhouche, M. Lahreche, and J. Bast, “Control of heat transfer in continuous casting process using neural networks,” Acta Automatica Sinica, vol. 34, no. 6, pp. 701–706, 2008. doi: 10.1016/S18741029(08)600348

[27] 
K. Mills, “Chapter 1.9 – How mold fluxes work,” in Treatise on Process Metallurgy, S. Seetharaman, Ed. Boston: Elsevier, 2014, pp. 435–475.

[28] 
Q. Yuan, B. Zhao, S. Vanka, and B. Thomas, “Study of computational issues in simulation of transient flow in continuous casting,” Steel Research Int., vol. 76, 2005.

[29] 
B. Launder and D. Spalding, “The numerical computation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289, 1974. doi: 10.1016/00457825(74)900292

[30] 
R. Chaudhary, C. Ji, B. Thomas, and S. Vanka, “Transient turbulent flow in a liquidmetal model of continuous casting, including comparison of six different methods,” Metallurgical and Materials Transactions B, vol. 42, pp. 987–1007, 2011. doi: 10.1007/s1166301195261

[31] 
A. Asad, C. Kratzsch, and R. Schwarze, “Numerical study of the fluid flow and the free surface behavior in a model mold,” 2015.

[32] 
C. Kratzsch, K. Timmel, S. Eckert, and R. Schwarze, “Urans simulation of continuous casting mold flow: Assessment of revised turbulence models,” Steel Research Int., vol. 86, p. 400, 2014.

[33] 
R. Liu, B. Thomas, L. Kalra, T. Bhattacharya, and A. Dasgupta, “Slidegate dithering effects on transient flow and mold level fluctuations,” AISTech  Iron and Steel Technology Conf. Proceedings, vol. 2, pp. 1351–1364, 2013.

[34] 
N. Zeng, Z. Wang, Y. Li, M. Du, and X. Liu, “Identification of nonlinear lateral flow immunoassay statespace models via particle filter approach,” IEEE Trans. Nanotechnology, vol. 11, no. 2, pp. 321–327, 2012. doi: 10.1109/TNANO.2011.2171193

[35] 
N. Zeng, Z. Wang, and H. Zhang, “Inferring nonlinear lateral flow immunoassay statespace models via an unscented Kalman filter,” Science China Information Sciences, vol. 59, 2016.

[36] 
N. Zeng, Z. Wang, Y. Li, M. Du, and X. Liu, “Inference of nonlinear statespace models for sandwichtype lateral flow immunoassay using extended Kalman filtering,” Biomedical Engineering,IEEE Trans., vol. 58, pp. 1959–1966, 2011. doi: 10.1109/TBME.2011.2106502

[37] 
S. Gu, G. Wen, J. Guo, Z. Wang, P. Tang, and Q. Liu, “Effect of shear stress on heat transfer behavior of nonnewtonian mold fluxes for peritectic steels slab casting,” ISIJ Int., vol. 60, pp. 1179–1187, 2020. doi: 10.2355/isijinternational.ISIJINT2019609

[38] 
K. C. Mills, “Structure and properties of slags used in the continuous casting of steel: Part 2 specialist mould powders,” ISIJ Int., vol. 56, pp. 14–23, 2016. doi: 10.2355/isijinternational.ISIJINT2015355

[39] 
Y. Deng, Z. Dan, X. Yan, Q. Wang, and S. He, “Investigation of rheological behavior for commercial mold slags,” Journal of Materials Research and Technology, vol. 9, pp. 9568–9575, 2020. doi: 10.1016/j.jmrt.2020.06.082

[40] 
X. Yan, M. Gan, H. Yuan, Q. Wang, S. He, and Q. Wang, “Study of nonnewtonian behavior of caosio 2 based mold slag and its effect on lubrication in continuous casting of steel,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 50, 2019.

[41] 
C. Ionescu, I. Birs, D. Copot, C. Muresan, and R. Caponetto, “Mathematical modelling with experimental validation of viscoelastic properties in nonnewtonian fluids,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 378, p. 20190284, 2020.

[42] 
L. Feng, F. Liu, I. Turner, and P. Zhuang, “Numerical methods and analysis for simulating the flow of a generalized OldroydB fluid between two infinite parallel rigid plates,” Int. Journal of Heat and Mass Transfer, vol. 115, pp. 1309–1320, 2017. doi: 10.1016/j.ijheatmasstransfer.2017.08.105

[43] 
Y. Luchko, “Operational calculus for the general fractional derivative and its applications,” Fractional Calculus and Applied Analysis, vol. 24, pp. 338–375, 2021. doi: 10.1515/fca20210016

[44] 
G. Ala, M. D. Paola, E. Francomano, Y. Li, and F. P. Pinnola, “Electrical analogous in viscoelasticity,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, pp. 2513–2527, 2014. doi: 10.1016/j.cnsns.2013.11.007

[45] 
C. Muresan, S. Folea, I. Birs, and C. Ionescu, “A novel fractionalorder model and controller for vibration suppression in flexible smart beam,” Nonlinear Dynamics, vol. 93, pp. 525–541, 2018. doi: 10.1007/s1107101842070

[46] 
Z. Ali, F. Rabiei, K. Shah, and T. Khodadadi, “Qualitative analysis of fractalfractional order COVID19 mathematical model with case study of wuhan,” Alexandria Engineering Journal, vol. 60, 2021.

[47] 
D. Copot, R. L. Magin, R. D. Keyser, and C. Ionescu, “Datadriven modelling of drug tissue trapping using anomalous kinetics,” Chaos,Solitons and Fractals, vol. 102, pp. 441–446, 2017. doi: 10.1016/j.chaos.2017.03.031

[48] 
R. Van Durme, G. crevecoeur, L. Dupre, and A. Coene, “Model based optimized steering and focusing of local magnetic particle concentrations for targeted drug delivery,” Drug Delivery, vol. 28, pp. 63–76, 2021. doi: 10.1080/10717544.2020.1853281

[49] 
K. Saad, A. Atangana, and D. Baleanu, “New fractional derivatives with nonsingular kernel applied to the burgers equation,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 28, 2018.

[50] 
A. Oustaloup, Diversity and Noninteger Differentiation for System Dynamics. Wiley, 2014.

[51] 
C. Ionescu, The Human Respiratory System: An Analysis of the Interplay Between Anatomy, Structure, Breathing and Fractal Dynamics. Springer, 2013.

[52] 
F. Ge, Y. Chen, and C. Kou, Regional Analysis of TimeFractional Diffusion Processes. Springer, 2018.

[53] 
H. Sun, Y. Zhang, S. Wei, and J. Zhu, “Fractional constitutive equation (face) for nonnewtonian fluid flow: Theoretical description,” Fluid Dynamics, pp. 1–17, 2016.

[54] 
J.B. Salmon, A. Colin, S. Manneville, and F. Molino, “Velocity profiles in shearbanding wormlike micelles,” Physical review letters, vol. 90, p. 228303, 2003. doi: 10.1103/PhysRevLett.90.228303

[55] 
D. Geng, H. Lei, J. He, and H. Liu, “Effect of electromagnetic swirling flow in slidegate SEN on flow field in square billet continuous casting mold,” Acta Mettalurgica Sinica, vol. 25, pp. 347–356, 2012.

[56] 
K. Cao, Y. Chen, and D. Stuart, “A fractional micromacro model for crowds of pedestrians based on fractional mean field games,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp. 261–270, 2016. doi: 10.1109/JAS.2016.7508801

[57] 
I. Birs, C. Muresan, O. Prodan, S. Folea, and C. Ionescu, “An experimental approach towards motion modeling and control of a vehicle transiting a nonnewtonian environment,” Fractal and Fractional, vol. 5, 2021.

[58] 
I. Schafer and K. Kruger, “Modelling of coils using fractional derivatives,” Journal of Magnetism and Magnetic Materials, vol. 307, 2006.

[59] 
I. Schafer and K. Krüger, “Modelling of lossy coils using fractional derivatives,” Journal of Physics D: Applied Physics, vol. 41, p. 45001, 2008. doi: 10.1088/00223727/41/4/045001

[60] 
M. Sowa and L. Majka, “Ferromagnetic core coil hysteresis modeling using fractional derivatives,” Nonlinear Dynamics, vol. 101, pp. 775–793, 2020. doi: 10.1007/s11071020058113

[61] 
D. Ivanov and A. Zhdanov, “Symmetrical augmented system of equations for the parameter identification of discrete fractional systems by generalized total least squares,” Mathematics, vol. 9, no. 24, 2021.

[62] 
P. Lino, G. Maione, F. Padula, S. Stasi, and A. Visioli, “Synthesis of fractionalorder PI controllers and fractionalorder filters for industrial electrical drives,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 58–69, 2017. doi: 10.1109/JAS.2017.7510325

[63] 
A. Ahmadi Dastjerdi, B. Vinagre, Y. Chen, and H. Hosseinnia, “Linear fractional order controllers: A survey in the frequency domain,” Annual Reviews in Control, pp. 51–70, 04, 2019.

[64] 
C. I. Muresan, I. R. Birs, C. M. Ionescu, and R. De Keyser, “Tuning of fractional order proportional integral/proportional derivative controllers based on existence conditions,” Proc. the Institution of Mechanical Engineers,Part I: Journal of Systems and Control Engineering, vol. 233, no. 4, pp. 384–391, 2019.

[65] 
I. Birs, I. Nascu, C. Ionescu, and C. Muresan, “Eventbased fractional order control,” Journal of Advanced Research, pp. 191–203, 2020.

[66] 
J. Sanchez, M. Guinaldo, A. Visioli, and S. Dormido, “Identification of process transfer function parameters in eventbased PI control loops,” ISA Transactions, vol. 75, pp. 157–171, 2018. doi: 10.1016/j.isatra.2018.01.033

[67] 
L. Merigo, M. Beschi, F. Padula, and A. Visioli, “A noisefiltering event generator for PIDplus controllers,” Journal of the Franklin Institute, vol. 355, pp. 774–802, 2018. doi: 10.1016/j.jfranklin.2017.11.041
