A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 11
Nov.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
B. Liu, R. Y. Song, Y. J. Xiang, J. B. Du, W. J. Ruan, and J. H. Hu, “Self-supervised entity alignment based on multi-modal contrastive learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2031–2033, Nov. 2022. doi: 10.1109/JAS.2022.105962
Citation: B. Liu, R. Y. Song, Y. J. Xiang, J. B. Du, W. J. Ruan, and J. H. Hu, “Self-supervised entity alignment based on multi-modal contrastive learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2031–2033, Nov. 2022. doi: 10.1109/JAS.2022.105962

Self-Supervised Entity Alignment Based on Multi- Modal Contrastive Learning

doi: 10.1109/JAS.2022.105962
More Information
  • loading
  • [1]
    W. Zeng, X. Zhao, J. Tang, and X. Lin, “Collective embedding-based entity alignment via adaptive features,” arXiv preprint arXiv: 1912.08404, 1912.
    [2]
    X. Liu, H. Hong, X. Wang, Z. Chen, E. Kharlamov, Y. Dong, and J. Tang, “A self-supervised method for entity alignment,” arXiv preprint arXiv: 2106.09395, 2021.
    [3]
    F. Liu, M. Chen, D. Roth, and N. Collier, “Visual pivoting for (unsupervised) entity alignment,” in Proc. AAAI Conf. Artificial Intelligence, 2021, pp. 4257–4266.
    [4]
    F. Liu, R. Ye, X. Wang, and S. Li, “HAL: Improved text-image matching by mitigating visual semantic HUBs,” in Proc. AAAI Conf. Artificial Intelligence, 2020, vol. 34, no. 7, pp. 11563−11571.
    [5]
    K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf Computer Vision and Pattern Recognition, 2016, pp. 770−778.
    [6]
    H.-W. Yang, Y. Zou, P. Shi, W. Lu, J. Lin, and X. Sun, “Aligning cross-lingual entities with multi-aspect information,” arXiv preprint arXiv: 1910.06575, 2019.
    [7]
    Z. Sun, W. Hu, and C. Li, “Cross-lingual entity alignment via joint attribute-preserving embedding,” in Proc Int. Semantic Web Conf. Springer, 2017, pp. 628−644.
    [8]
    C. Li, Y. Cao, L. Hou, J. Shi, J. Li, and T.-S. Chua, “Semi-supervised entity alignment via joint knowledge embedding model and cross-graph model,” in Proc. Conf. Empirical Methods Natural Language Processing and 9th Int. Joint Conf. Natural Language Processing, 2019, pp. 2723– 2732.
    [9]
    Y. Wu, X. Liu, Y. Feng, Z. Wang, and D. Zhao, “Jointly learning entity and relation representations for entity alignment,” arXiv preprint arXiv: 1909.09317, 2019.
    [10]
    K. Xu, L. Wang, M. Yu, Y. Feng, Y. Song, Z. Wang, and D. Yu, “Cross-lingual knowledge graph alignment via graph matching neural network,” arXiv preprint arXiv: 1905.11605, 2019.
    [11]
    Z. Sun, C. Wang, W. Hu, M. Chen, J. Dai, W. Zhang, and Y. Qu, “Knowledge graph alignment network with gated multi-hop neighborhood aggregation,” in Proc. AAAI Conf. Artificial Intelligence, 2020, vol. 34, no. 1, pp. 222−229.
    [12]
    X. H. Li, Y Zhang, and C. X. Xing. “Jointly learning knowledge embedding and neighborhood consensus with relational knowledge distillation for entity alignment.” arXiv preprint arXiv: 2201.11249, 2022.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (89) PDF downloads(31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return