IEEE/CAA Journal of Automatica Sinica
Citation: | L. Chen, Z. Lin, H. Garcia de Marina, Z. Sun, and M. Feroskhan, “Maneuvering angle rigid formations with global convergence guarantees,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1464–1475, Aug. 2022. doi: 10.1109/JAS.2022.105749 |
Angle rigid multi-agent formations can simultaneously undergo translational, rotational, and scaling maneuvering, therefore combining the maneuvering capabilities of both distance and bearing rigid formations. However, maneuvering angle rigid formations in 2D or 3D with global convergence guarantees is shown to be a challenging problem in the existing literature even when relative position measurements are available. Motivated by angle-induced linear equations in 2D triangles and 3D tetrahedra, this paper aims to solve this challenging problem in both 2D and 3D under a leader-follower framework. For the 2D case where the leaders have constant velocities, by using local relative position and velocity measurements, a formation maneuvering law is designed for the followers governed by double-integrator dynamics. When the leaders have time-varying velocities, a sliding mode formation maneuvering law is proposed by using the same measurements. For the 3D case, to establish an angle-induced linear equation for each tetrahedron, we assume that all the followers’ coordinate frames share a common Z direction. Then, a formation maneuvering law is proposed for the followers to globally maneuver Z-weakly angle rigid formations in 3D. The extension to Lagrangian agent dynamics and the construction of the desired rigid formations by using the minimum number of angle constraints are also discussed. Simulation examples are provided to validate the effectiveness of the proposed algorithms.
[1] |
H. S. Ahn, Formation Control. Cham, Germany: Springer, 2020.
|
[2] |
Y. G. Liu and G. Nejat, “Robotic urban search and rescue: A survey from the control perspective,” J. Intell. Robot. Syst., vol. 72, no. 2, pp. 147–165, Mar. 2013. doi: 10.1007/s10846-013-9822-x
|
[3] |
J. Y. Hu, P. Bhowmick, I. Jang, F. Arvin, and A. Lanzon, “A decentralized cluster formation containment framework for multirobot systems,” IEEE Trans. Robot., vol. 37, no. 6, pp. 1936–1955, Dec. 2021. doi: 10.1109/TRO.2021.3071615
|
[4] |
Q. Wang, Y. Z. Wang, and H. X. Zhang, “The formation control of multi-agent systems on a circle,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 148–154, Jan. 2016.
|
[5] |
S. Y. Zhao, “Affine formation maneuver control of multiagent systems,” IEEE Trans. Automat. Contr., vol. 63, no. 12, pp. 4140–4155, Dec. 2018. doi: 10.1109/TAC.2018.2798805
|
[6] |
Z. M. Han, L. L. Wang, Z. Y. Lin, and R. H. Zheng, “Formation control with size scaling via a complex Laplacian-based approach,” IEEE Trans. Cybern., vol. 46, no. 10, pp. 2348–2359, Oct. 2015.
|
[7] |
L. M. Chen, H. G. De Marina, and M. Cao, “Maneuvering formations of mobile agents using designed mismatched angles,” IEEE Trans. Automat. Contr., vol. 67, no. 4, pp. 1655–1668, Apr. 2021.
|
[8] |
X. Fang, X. L. Li, and L. H. Xie, “Distributed formation maneuver control of multiagent systems over directed graphs,” IEEE Trans. Cybern., 2021, DOI: 10.1109/TCYB.2020.3044581.
|
[9] |
A. L. Yang, W. Naeem, and M. R. Fei, “Decentralised formation control and stability analysis for multi-vehicle cooperative manoeuvre,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 92–100, Jan. 2014. doi: 10.1109/JAS.2014.7004625
|
[10] |
X. W. Dong and G. Q. Hu, “Time-varying formation control for general linear multi-agent systems with switching directed topologies,” Automatica, vol. 73, pp. 47–55, Nov. 2016. doi: 10.1016/j.automatica.2016.06.024
|
[11] |
A. Mondal, L. Behera, S. R. Sahoo, and A. Shukla, “A novel multi-agent formation control law with collision avoidance,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 558–568, Jul. 2017. doi: 10.1109/JAS.2017.7510565
|
[12] |
Y. J. Lin, Z. Y. Lin, Z. Y. Sun, and B. D. O. Anderson, “A unified approach for finite-time global stabilization of affine, rigid, and translational formation,” IEEE Trans. Automat. Contr., vol. 67, no. 4, pp. 1869–1881, Apr. 2022. doi: 10.1109/TAC.2021.3084247
|
[13] |
S. Y. Zhao and D. Zelazo, “Translational and scaling formation maneuver control via a bearing-based approach,” IEEE Trans. Contr. Netw. Syst., vol. 4, no. 3, pp. 429–438, Sep. 2017. doi: 10.1109/TCNS.2015.2507547
|
[14] |
Z. M. Han, K. X. Guo, L. H. Xie, and Z. Y. Lin, “Integrated relative localization and leader-follower formation control,” IEEE Trans. Automat. Contr, vol. 64, no. 1, pp. 20–34, Jan. 2018.
|
[15] |
T. R. Han, Z. Y. Lin, R. H. Zheng, and M. Y. Fu, “A barycentric coordinate-based approach to formation control under directed and switching sensing graphs,” IEEE Trans. Cybern., vol. 48, no. 4, pp. 1202–1215, Apr. 2017.
|
[16] |
Z. X. Liu, Y. B. Li, F. Y. Wang, and Z. Q. Chen, “Reduced-order observer-based leader-following formation control for discrete-time linear multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1715–1723, Oct. 2020.
|
[17] |
Z. Y. Gao and G. Guo, “Fixed-time sliding mode formation control of AUVs based on a disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 539–545, Mar. 2020. doi: 10.1109/JAS.2020.1003057
|
[18] |
H. G. De Marina, B. Jayawardhana, and M. Cao, “Distributed rotational and translational maneuvering of rigid formations and their applications,” IEEE Trans. Robot., vol. 32, no. 3, pp. 684–697, Jun. 2016. doi: 10.1109/TRO.2016.2559511
|
[19] |
M. H. Trinh and H. S. Ahn, “Finite-time bearing-based maneuver of acyclic leader-follower formations,” IEEE Contr. Syst. Lett., vol. 6, pp. 1004–1009, Jun. 2021.
|
[20] |
X. L. Li, M. J. Er, G. H. Yang, and N. Wang, “Bearing-based formation manoeuvre control of nonholonomic multi-agent systems,” Int. J. Syst. Sci., vol. 50, no. 16, pp. 2993–3002, Nov. 2019. doi: 10.1080/00207721.2019.1692094
|
[21] |
M. H. Trinh, Q. Van Tran, D. Van Vu, P. D. Nguyen, and H. S. Ahn, “Robust tracking control of bearing-constrained leader-follower formation,” Automatica, vol. 131, p. 109733, Sep. 2021.
|
[22] |
S. Y. Zhao, Z. H. Li, and Z. T. Ding, “Bearing-only formation tracking control of multiagent systems,” IEEE Trans. Automat. Contr., vol. 64, no. 11, pp. 4541–4554, Nov. 2019. doi: 10.1109/TAC.2019.2903290
|
[23] |
L. M. Chen, M. Cao, and C. J. Li, “Angle rigidity and its usage to stabilize multiagent formations in 2-D,” IEEE Trans. Automat. Contr., vol. 66, no. 8, pp. 3667–3681, Aug. 2021. doi: 10.1109/TAC.2020.3025539
|
[24] |
G. S. Jing, G. F. Zhang, H. W. J. Lee, and L. Wang, “Angle-based shape determination theory of planar graphs with application to formation stabilization,” Automatica, vol. 105, pp. 117–129, Jul. 2019. doi: 10.1016/j.automatica.2019.03.026
|
[25] |
L. M. Chen, M. M. Shi, H. G. De Marina, and M. Cao, “Stabilizing and maneuvering angle rigid multi-agent formations with double-integrator agent dynamics,” IEEE Trans. Contr. Netw. Syst., 2022, DOI: 10.1109/TCNS.2022.3153885.
|
[26] |
J. Yang, X. M. Wang, S. Baldi, S. Singh, and S. Farì, “A software-in-the-loop implementation of adaptive formation control for fixed-wing UAVs,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1230–1239, Sept. 2019. doi: 10.1109/JAS.2019.1911702
|
[27] |
G. S. Jing and L. Wang, “Multiagent flocking with angle-based formation shape control,” IEEE Trans. Automat. Contr., vol. 65, no. 2, pp. 817–823, Feb. 2020. doi: 10.1109/TAC.2019.2917143
|
[28] |
Z. Y. Lin, L. L. Wang, Z. Y. Chen, M. Y. Fu, and Z. M. Han, “Necessary and sufficient graphical conditions for affine formation control,” IEEE Trans. Automat. Contr., vol. 61, no. 10, pp. 2877–2891, Oct. 2016. doi: 10.1109/TAC.2015.2504265
|
[29] |
L. M. Chen, J. Mei, C. J. Li, and G. F. Ma, “Distributed leader-follower affine formation maneuver control for high-order multiagent systems,” IEEE Trans. Automat. Control, vol. 65, no. 11, pp. 4941–4948, Nov. 2020. doi: 10.1109/TAC.2020.2986684
|
[30] |
L. M. Chen and Z. Y. Sun, “Globally stabilizing triangularly angle rigid formations,” IEEE Trans. Autom. Contr., 2022, DOI: 10.1109/TAC.2022.3151567.
|
[31] |
R. Connelly, “Generic global rigidity,” Discrete Comput. Geom., vol. 33, no. 4, pp. 549–563, Apr. 2005. doi: 10.1007/s00454-004-1124-4
|
[32] |
X. Fang, X. L. Li, and L. H. Xie, “Angle-displacement rigidity theory with application to distributed network localization,” IEEE Trans. Automat. Contr., vol. 66, no. 6, pp. 2574–2587, Jun. 2021. doi: 10.1109/TAC.2020.3012630
|
[33] |
D. P. Yang, W. Ren, and X. D. Liu, “Fully distributed adaptive sliding-mode controller design for containment control of multiple Lagrangian systems,” Syst. Control Lett., vol. 72, pp. 44–52, Oct. 2014. doi: 10.1016/j.sysconle.2014.07.006
|
[34] |
L. G. Wu, J. X. Liu, S. Vazquez, and S. K. Mazumder, “Sliding mode control in power converters and drives: A review,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 392–406, Mar. 2022. doi: 10.1109/JAS.2021.1004380
|
[35] |
M. C. Park, Z. Y. Sun, M. H. Trinh, B. D. O. Anderson, and H. S. Ahn, “Distance-based control of K4 formation with almost global convergence,” in Proc. IEEE 55th Conf. Decision and Control, Las Vegas, USA, 2016, pp. 904–909.
|
[36] |
M. C. Park, Z. Y. Sun, B. D. O. Anderson, and H. S. Ahn, “Distance-based control of K n formations in general space with almost global convergence,” IEEE Trans. Automat. Contr., vol. 63, no. 8, pp. 2678–2685, Aug. 2018. doi: 10.1109/TAC.2017.2776524
|
[37] |
R. Kennedy and C. J. Taylor, “Network localization from relative bearing measurements,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago, USA, 2014, pp. 149–156.
|
[38] |
G. R. Duan, “High-order system approaches: I. Fully-actuated systems and parametric designs,” Acta Autom. Sinica, vol. 46, no. 7, pp. 1333–1345, Jul. 2020.
|