A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 6
Jun.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
H. Geng, Z. D. Wang, Y. Chen, X. J. Yi, and  Y. H. Cheng,  “Variance-constrained filtering fusion for nonlinear cyber-physical systems with the denial-of-service attacks and stochastic communication protocol,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 978–989, Jun. 2022. doi: 10.1109/JAS.2022.105623
Citation: H. Geng, Z. D. Wang, Y. Chen, X. J. Yi, and  Y. H. Cheng,  “Variance-constrained filtering fusion for nonlinear cyber-physical systems with the denial-of-service attacks and stochastic communication protocol,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 978–989, Jun. 2022. doi: 10.1109/JAS.2022.105623

Variance-Constrained Filtering Fusion for Nonlinear Cyber-Physical Systems With the Denial-of-Service Attacks and Stochastic Communication Protocol

doi: 10.1109/JAS.2022.105623
Funds:  This work was supported in part by the National Natural Science Foundation of China (62173068, 61803074, 61703245, 61973102, U2030205, 61903065, 61671109, U1830207, U1830133), the China Postdoctoral Science Foundation (2018M643441, 2017M623005), the Royal Society of UK, and the Alexander von Humboldt Foundation of Germany
More Information
  • In this paper, a new filtering fusion problem is studied for nonlinear cyber-physical systems under error-variance constraints and denial-of-service attacks. To prevent data collision and reduce communication cost, the stochastic communication protocol is adopted in the sensor-to-filter channels to regulate the transmission order of sensors. Each sensor is allowed to enter the network according to the transmission priority decided by a set of independent and identically-distributed random variables. From the defenders’ view, the occurrence of the denial-of-service attack is governed by the randomly Bernoulli-distributed sequence. At the local filtering stage, a set of variance-constrained local filters are designed where the upper bounds (on the filtering error covariances) are first acquired and later minimized by appropriately designing filter parameters. At the fusion stage, all local estimates and error covariances are combined to develop a variance-constrained fusion estimator under the federated fusion rule. Furthermore, the performance of the fusion estimator is examined by studying the boundedness of the fused error covariance. A simulation example is finally presented to demonstrate the effectiveness of the proposed fusion estimator.

     

  • loading
  • [1]
    X. M. Zhang and Q. L. Han, “Network-based H filtering for discrete-time systems,” IEEE Trans. Signal Process., vol. 60, no. 2, pp. 956–961, Feb. 2012. doi: 10.1109/TSP.2011.2175224
    [2]
    S. Zonouz, K. M. Rogers, R. Berthier, R. B. Bobba, W. H. Sanders, and T. J. Overbye, “SCPSE: Security-oriented cyber-physical state estimation for power grid critical infrastructures,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1790–1799, Dec. 2012. doi: 10.1109/TSG.2012.2217762
    [3]
    K. B. Adedeji and Y. Hamam, “Cyber-physical systems for water supply network management: Basics, challenges, and roadmap,” Sustainability, vol. 12, no. 22, p. 9555, Nov. 2020.
    [4]
    C. W. Xing, Y. D. Jing, S. Wang, S. D. Ma, and H. V. Poor, “New viewpoint and algorithms for water-filling solutions in wireless communications,” IEEE Trans. Signal Process., vol. 68, pp. 1618–1634, Feb. 2020. doi: 10.1109/TSP.2020.2973488
    [5]
    B. Chen, W. A. Zhang, and L. Yu, “Distributed finite-horizon fusion Kalman filtering for bandwidth and energy constrained wireless sensor networks,” IEEE Trans. Signal Process., vol. 62, no. 4, pp. 797–812, Feb. 2014. doi: 10.1109/TSP.2013.2294603
    [6]
    J. Michniewicz and G. Reinhart, “Cyber-physical robotics-automated analysis, programming and configuration of robot cells based on cyber-physical-systems,” Proc. Technol., vol. 15, pp. 566–575, Dec. 2014. doi: 10.1016/j.protcy.2014.09.017
    [7]
    H. Geng, Y. Liang, and Y. H. Cheng, “Target state and markovian jump ionospheric height bias estimation for OTHR tracking systems,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 50, no. 7, pp. 2599–2611, Jul. 2020. doi: 10.1109/TSMC.2018.2822819
    [8]
    Y. L. Huang, Y. G. Zhang, and J. A. Chambers, “A novel Kullback-Leibler divergence minimization-based adaptive student’s t-filter,” IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5417–5432, Oct. 2019. doi: 10.1109/TSP.2019.2939079
    [9]
    Y. L. Huang, Y. G. Zhang, Y. X. Zhao, and J. A. Chambers, “A novel robust gaussian-student’s t mixture distribution based Kalman filter,” IEEE Trans. Signal Process., vol. 67, no. 13, pp. 3606–3620, Jul. 2019. doi: 10.1109/TSP.2019.2916755
    [10]
    D. R. Ding, Q. L. Han, X. H. Ge, and J. Wang, “Secure state estimation and control of cyber-physical systems: A survey,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 51, no. 1, pp. 176–190, Jan. 2021. doi: 10.1109/TSMC.2020.3041121
    [11]
    L. Li and G. H. Yang, “Remote observer-based robust control for cyber-physical systems under asynchronous DoS attacks: An intelligent approach,” Int. J. Syst. Sci., vol. 52, no. 16, pp. 3511–3525, May 2021. doi: 10.1080/00207721.2021.1931727
    [12]
    C. B. Wen, Z. D. Wang, T. Geng, and F. E. Alsaadi, “Event-based distributed recursive filtering for state-saturated systems with redundant channels,” Inf. Fusion, vol. 39, pp. 96–107, Jan. 2018. doi: 10.1016/j.inffus.2017.04.004
    [13]
    T. Wen, C. B. Wen, C. Roberts, and B. G. Cai, “Distributed filtering for a class of discrete-time systems over wireless sensor networks,” J. Franklin Inst., vol. 357, no. 5, pp. 3038–3055, Mar. 2020. doi: 10.1016/j.jfranklin.2020.02.005
    [14]
    W. L. Chen, J. Hu, Z. H. Wu, X. Y. Yu, and D. Y. Chen, “Finite-time memory fault detection filter design for nonlinear discrete systems with deception attacks,” Int. J. Syst. Sci., vol. 51, no. 8, pp. 1464–1481, May 2020. doi: 10.1080/00207721.2020.1765219
    [15]
    Y. Cui, Y. R. Liu, W. B. Zhang, and F. E. Alsaadi, “Sampled-based consensus for nonlinear multiagent systems with deception attacks: The decoupled method,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 51, no. 1, pp. 561–573, Jan. 2021. doi: 10.1109/TSMC.2018.2876497
    [16]
    W. L. He, F. Qian, Q. L. Han, and G. R. Chen, “Almost sure stability of nonlinear systems under random and impulsive sequential attacks,” IEEE Trans. Autom. Control, vol. 65, no. 9, pp. 3879–3886, Sept. 2020. doi: 10.1109/TAC.2020.2972220
    [17]
    L. Liu, L. F. Ma, J. Zhang, and Y. M. Bo, “Distributed non-fragile set-membership filtering for nonlinear systems under fading channels and bias injection attacks,” Int. J. Syst. Sci., vol. 52, no. 6, pp. 1192–1205, Jan. 2021. doi: 10.1080/00207721.2021.1872118
    [18]
    J. H. Song, D. R. Ding, H. J. Liu, and X. L. Wang, “Non-fragile distributed state estimation over sensor networks subject to DoS attacks: The almost sure stability,” Int. J. Syst. Sci., vol. 51, no. 6, pp. 1119–1132, Apr. 2020. doi: 10.1080/00207721.2020.1752843
    [19]
    Y. F. Zhao, W. Yao, J. J. Nan, J. K. Fang, X. M. Ai, J. Y. Wen, and S. J. Chen, “Resilient adaptive wide-area damping control to mitigate false data injection attacks,” IEEE Syst. J., vol. 15, no. 4, pp. 4831–4842, Dec. 2021. doi: 10.1109/JSYST.2020.3020425
    [20]
    X. H. Ge, Q. L. Han, M. Y. Zhong, and X. M. Zhang, “Distributed Krein space-based attack detection over sensor networks under deception attacks,” Automatica, vol. 109, p. 108557, Nov. 2019.
    [21]
    J. H. Huang, D. W. C. Ho, F. F. Li, W. Yang, and Y. Tang, “Secure remote state estimation against linear man-in-the-middle attacks using watermarking,” Automatica, vol. 121, p. 109182, Nov. 2020.
    [22]
    X. M. Zhang, Q. L. Han, X. H. Ge, and L. Ding, “Resilient control design based on a sampled-data model for a class of networked control systems under denial-of-service attacks,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3616–3626, Aug. 2020. doi: 10.1109/TCYB.2019.2956137
    [23]
    W. Y. Xu, D. W. C. Ho, J. Zhong, and B. Chen, “Event/self-triggered control for leader-following consensus over unreliable network with DoS attacks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 10, pp. 3137–3149, Oct. 2019. doi: 10.1109/TNNLS.2018.2890119
    [24]
    Y. Yu and Y. Yuan, “Event-triggered active disturbance rejection control for nonlinear network control systems subject to DoS and physical attacks,” ISA Trans., vol. 104, pp. 73–83, Sept. 2020. doi: 10.1016/j.isatra.2019.05.004
    [25]
    H. F. Song, D. R. Ding, H. L. Dong, G. L. Wei, and Q.-L. Han, “Distributed entropy filtering subject to DoS attacks in non-Gauss environments,” Int. J. Robust Nonlinear Control, vol. 30, no. 3, pp. 1240–1257, Feb. 2020. doi: 10.1002/rnc.4818
    [26]
    W. Y. Xu, G. Q. Hu, D. W. C. Ho, and Z. Feng, “Distributed secure cooperative control under denial-of-service attacks from multiple adversaries,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3458–3467, Aug. 2020. doi: 10.1109/TCYB.2019.2896160
    [27]
    H. Geng, Z. D. Wang, and Y. H. Cheng, “Distributed federated tobit Kalman filter fusion over a packet-delaying network: A probabilistic perspective,” IEEE Trans. Signal Process., vol. 66, no. 17, pp. 4477–4489, Sept. 2018. doi: 10.1109/TSP.2018.2853098
    [28]
    H. Lan, Y. Liang, Z. F. Wang, F. Yang, and Q. Pan, “Distributed ECM algorithm for OTHR multipath target tracking with unknown ionospheric heights,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 1, pp. 61–75, Feb. 2018. doi: 10.1109/JSTSP.2017.2787488
    [29]
    T. C. Li, X. X. Wang, Y. Liang, and Q. Pan, “On arithmetic average fusion and its application for distributed multi-Bernoulli multitarget tracking,” IEEE Trans. Signal Process., vol. 68, pp. 2883–2896, Apr. 2020.
    [30]
    S. Marir, M. Chadli, and M. V. Basin, “Bounded real lemma for singular linear continuous-time fractional-order systems,” Automatica, vol. 135, p. 109962, Jan. 2022.
    [31]
    P. Sun, B. Zhu, Z. Y. Zuo, and M. V. Basin, “Vision-based finite-time uncooperative target tracking for UAV subject to actuator saturation,” Automatica, vol. 130, p. 109708, Aug. 2021.
    [32]
    L. F. Xu, X. R. Li, Z. S. Duan, and J. Lan, “Modeling and state estimation for dynamic systems with linear equality constraints,” IEEE Trans. Signal Process., vol. 61, no. 11, pp. 2927–2939, Jun. 2013. doi: 10.1109/TSP.2013.2255045
    [33]
    R. Caballero-águila, A. Hermoso-Carazo, and J. Linares-Pérez, “Networked distributed fusion estimation under uncertain outputs with random transmission delays, packet losses and multi-packet processing,” Signal Process., vol. 156, pp. 71–83, Mar. 2019. doi: 10.1016/j.sigpro.2018.10.012
    [34]
    R. Caballero-águila, A. Hermoso-Carazo, and J. Linares-Pérez, “Networked fusion estimation with multiple uncertainties and time-correlated channel noise,” Inf. Fusion, vol. 54, pp. 161–171, Feb. 2020. doi: 10.1016/j.inffus.2019.07.008
    [35]
    D. Ciuonzo, A. Aubry, and V. Carotenuto, “Rician MIMO channel- and jamming-aware decision fusion,” IEEE Trans. Signal Process., vol. 65, no. 15, pp. 3866–3880, Aug. 2017. doi: 10.1109/TSP.2017.2686375
    [36]
    D. Ciuonzo, V. Carotenuto, and A. De Maio, “On multiple covariance equality testing with application to SAR change detection,” IEEE Trans. Signal Process., vol. 65, no. 19, pp. 5078–5091, Oct. 2017. doi: 10.1109/TSP.2017.2712124
    [37]
    H. Geng, H. J. Liu, L. F. Ma, and X. J. Yi, “Multi-sensor filtering fusion meets censored measurements under a constrained network environment: Advances, challenges and prospects,” Int. J. Syst. Sci., vol. 52, no. 16, pp. 3410–3436, Nov. 2021. doi: 10.1080/00207721.2021.2005178
    [38]
    H. J. Fu, H. L. Dong, F. Han, Y. X. Shen, and N. Hou, “Outlier-resistant H filtering for a class of networked systems under Round-Robin protocol,” Neurocomputing, vol. 403, pp. 133–142, Aug. 2020. doi: 10.1016/j.neucom.2020.04.058
    [39]
    X. R. Li, F. Han, N. Hou, H. L. Dong, and H. J. Liu, “Set-membership filtering for piecewise linear systems with censored measurements under Round-Robin protocol,” Int. J. Syst. Sci., vol. 51, no. 9, pp. 1578–1588, May 2020. doi: 10.1080/00207721.2020.1768453
    [40]
    J. J. Li, G. L. Wei, D. R. Ding, and E. G. Tian, “Protocol-based H filtering for piecewise linear systems: A measurement-dependent equivalent reduction approach,” Int. J. Robust Nonlinear Control, vol. 31, no. 8, pp. 3163–3178, May 2021. doi: 10.1002/rnc.5445
    [41]
    H. Geng, Z. D. Wang, L. Zou, A. Mousavi, and Y. H. Cheng, “Protocol-based tobit Kalman filter under integral measurements and probabilistic sensor failures,” IEEE Trans. Signal Process., vol. 69, pp. 546–559, Dec. 2020.
    [42]
    S. Chen, L. F. Ma, and Y. Q. Ma, “Distributed set-membership filtering for nonlinear systems subject to round-robin protocol and stochastic communication protocol over sensor networks,” Neurocomputing, vol. 385, pp. 13–21, Apr. 2020. doi: 10.1016/j.neucom.2019.11.056
    [43]
    Y. Y. Dong, Y. Song, and G. L. Wei, “Efficient model-predictive control for networked interval type-2 T-S fuzzy system with stochastic communication protocol,” IEEE Trans. Fuzzy Syst., vol. 29, no. 2, pp. 286–297, Feb. 2021. doi: 10.1109/TFUZZ.2020.3004192
    [44]
    D. H. Li, J. L. Liang, F. Wang, and X. W. Ren, “Observer-based H control of two-dimensional delayed networks under the random access protocol,” Neurocomputing, vol. 401, pp. 353–363, Aug. 2020. doi: 10.1016/j.neucom.2020.03.044
    [45]
    K. Q. Zhu, J. Hu, Y. R. Liu, N. D. Alotaibi, and F. E. Alsaadi, “On $\ell_2-\ell_\infty$ output-feedback control scheduled by stochastic communication protocol for two-dimensional switched systems” Int. J. Syst. Sci., vol. 52, no. 14, pp. 2961–2976, May 2021. doi: 10.1080/00207721.2021.1914768
    [46]
    W. H. Song, Z. D. Wang, J. N. Wang, F. E. Alsaadi, and J. Y. Shan, “Secure particle filtering for cyber-physical systems with binary sensors under multiple attacks,” IEEE Syst. J., vol. 16, no. 1, pp. 603–613, Mar. 2022. doi: 10.1109/JSYST.2021.3064920
    [47]
    N. A. Carlson, “Federated square root filter for decentralized parallel processors,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 517–525, May 1990. doi: 10.1109/7.106130
    [48]
    Y. Theodor and U. Shaked, “Robust discrete-time minimum-variance filtering,” IEEE Trans. Signal Process., vol. 44, no. 2, pp. 181–189, Feb. 1996. doi: 10.1109/78.485915

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (190) PDF downloads(58) Cited by()

    Highlights

    • A new filtering fusion problem is studied for nonlinear cyber-physical systems
    • Error-variance constraints and denial-of-service attacks are investigated
    • A fusion estimator is proposed under the federated fusion rule
    • The performance of the fusion estimator is examined
    • Simulation is presented to illustrate the proposed fusion estimato

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return