IEEE/CAA Journal of Automatica Sinica
Citation:  W. L. Duo, M. C. Zhou, and A. Abusorrah, “A survey of cyber attacks on cyber physical systems: Recent advances and challenges,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 784–800, May 2022. doi: 10.1109/JAS.2022.105548 
A cyber physical system (CPS) is a complex system that integrates sensing, computation, control and networking into physical processes and objects over Internet. It plays a key role in modern industry since it connects physical and cyber worlds. In order to meet everchanging industrial requirements, its structures and functions are constantly improved. Meanwhile, new security issues have arisen. A ubiquitous problem is the fact that cyber attacks can cause significant damage to industrial systems, and thus has gained increasing attention from researchers and practitioners. This paper presents a survey of stateoftheart results of cyber attacks on cyber physical systems. First, as typical system models are employed to study these systems, timedriven and eventdriven systems are reviewed. Then, recent advances on three types of attacks, i.e., those on availability, integrity, and confidentiality are discussed. In particular, the detailed studies on availability and integrity attacks are introduced from the perspective of attackers and defenders. Namely, both attack and defense strategies are discussed based on different system models. Some challenges and open issues are indicated to guide future research and inspire the further exploration of this increasingly important area.
[1] 
Y. Lu, “Cyber physical system (CPS)based industry 4.0: A survey,” J. Ind. Int. Manage., vol. 2, no. 3, p. 1750014, Sep. 2017.

[2] 
H. F. Fan, M. Ni, L. L. Zhao, and M. L. Li, “Review of cyber physical system and cyber attack modeling,” in Proc. 12th IEEE PES AsiaPacific Power and Energy Eng. Conf., Nanjing, China, 2020, pp. 1 – 5.

[3] 
L. P. Chang, T. W. Kuo, C. Gill, and J. Nakazawa, “Introduction to the special issue on realtime, embedded and cyberphysical systems,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 5S, p. 155, Nov. 2014.

[4] 
G. Franze, G. Fortino, X. H. Cao, G. M. L. Sarne, and Z. Song, “Resilient control in largescale networked cyberphysical systems: Guest editorial,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1201–1203, Sept. 2020. doi: 10.1109/JAS.2020.1003327

[5] 
S. Karnouskos, “Cyberphysical systems in the SmartGrid,” in Proc. 9th IEEE Int. Conf. Industrial Informatics, Lisbon, Portugal, 2011, pp. 20−23.

[6] 
Y. Zhang, M. K. Qiu, C. W. Tsai, M. M. Hassan, and A. Alamri, “HealthCPS: Healthcare cyberphysical system assisted by cloud and big data,” IEEE Syst. J., vol. 11, no. 1, pp. 88–95, Mar. 2017. doi: 10.1109/JSYST.2015.2460747

[7] 
Y. Liu, Y. Peng, B. L. Wang, S. R. Yao, and Z. H. Liu, “Review on cyberphysical systems,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 27–40, Jan. 2017. doi: 10.1109/JAS.2017.7510349

[8] 
M. Muthuppalaniappan and K. Stevenson, “Healthcare cyberattacks and the COVID19 pandemic: An urgent threat to global health,” Int. J. Qual. Health Care, vol. 33, no. 1, p. mzaa117, Feb. 2021.

[9] 
A. Humayed, J. Q. Lin, F. J. Li, and B. Luo, “Cyberphysical systems security — A survey,” IEEE Internet Things J., vol. 4, no. 6, pp. 1802–1831, Dec. 2017. doi: 10.1109/JIOT.2017.2703172

[10] 
D. R. Ding, Q. L. Han, Y. Xiang, X. H. Ge, and X. M. Zhang, “A survey on security control and attack detection for industrial cyberphysical systems,” Neurocomputing, vol. 275, pp. 1674–1683, 2018. doi: 10.1016/j.neucom.2017.10.009

[11] 
J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O. Tippenhauer, H. Sandberg, and R. Candell, “A survey of physicsbased attack detection in cyberphysical systems,” ACM Comput. Surv., vol. 51, no. 4, pp. 1–36, Jul. 2018.

[12] 
M. S. Mahmoud, M. M. Hamdan, and U. A. Baroudi, “Modeling and control of cyberphysical systems subject to cyber attacks: A survey of recent advances and challenges,” Neurocomputing, vol. 338, pp. 101–115, Apr. 2019. doi: 10.1016/j.neucom.2019.01.099

[13] 
A. Rashidinejad, B. Wetzels, M. Reniers, L. Y. Lin, Y. T. Zhu, and R. Su, “Supervisory control of discreteevent systems under attacks: An overview and outlook,” in Proc. 18th European Control Conf., Naples, Italy, 2019, pp. 1732−1739.

[14] 
S. M. Dibaji, M. Pirani, D. B. Flamholz, A. M. Annaswamy, K. H. Johansson, and A. Chakrabortty, “A systems and control perspective of CPS security,” Annu. Rev. Control, vol. 47, pp. 394–411, Jan. 2019. doi: 10.1016/j.arcontrol.2019.04.011

[15] 
S. Singh, N. Yadav, and P. K. Chuarasia, “A review on cyber physical system attacks: Issues and challenges,” in Proc. Int. Conf. Communication and Signal Processing, Chennai, India, 2020, pp. 1133−1138.

[16] 
L. W. Cao, X. N. Jiang, Y. M. Zhao, S. G. Wang, D. You, and X. L. Xu, “A survey of network attacks on cyberphysical systems,” IEEE Access, vol. 8, pp. 44219–44227, Mar. 2020. doi: 10.1109/ACCESS.2020.2977423

[17] 
S. Tan, J. M. Guerrero, P. L. Xie, R. K. Han, and J. C. Vasquez, “Brief survey on attack detection methods for cyberphysical systems,” IEEE Syst. J., vol. 14, no. 4, pp. 5329–5339, Dec. 2020. doi: 10.1109/JSYST.2020.2991258

[18] 
D. Zhang, Q. G. Wang, G. Feng, Y. Shi, and A. V. Vasilakos, “A survey on attack detection, estimation and control of industrial cyber–physical systems,” ISA Trans., vol. 116, pp. 1–6, Oct. 2021. doi: 10.1016/j.isatra.2021.01.036

[19] 
D. R. Ding, Q. L. Han, X. H. Ge, and J. Wang, “Secure state estimation and control of cyberphysical systems: A survey,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 1, pp. 176–190, Jan. 2021. doi: 10.1109/TSMC.2020.3041121

[20] 
H. Zhang, Y. F. Qi, and J. F. Wu, “Optimal jamming power allocation against remote state estimation,” in Proc. American Control Conf., Seattle, USA, 2017, pp. 1660−1665.

[21] 
Y. Zhao, Z. Chen, C. J. Zhou, Y. C. Tian, and Y. Q. Qin, “Passivitybased robust control against quantified false data injection attacks in cyberphysical systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1440–1450, Aug. 2021. doi: 10.1109/JAS.2021.1004012

[22] 
Y. Z. Li, D. E. Quevedo, S. Dey, and L. Shi, “SINRbased DoS attack on remote state estimation: A gametheoretic approach,” IEEE Trans. Control Netw. Syst., vol. 4, no. 3, pp. 632–642, Sep. 2017. doi: 10.1109/TCNS.2016.2549640

[23] 
H. Zhang, Y. F. Qi, J. F. Wu, L. K. Fu, and L. D. He, “DoS attack energy management against remote state estimation,” IEEE Trans. Control Netw. Syst., vol. 5, no. 1, pp. 383–394, Mar. 2018. doi: 10.1109/TCNS.2016.2614099

[24] 
J. H. Zhang, J. T. Sun, and H. Lin, “Optimal DoS attack schedules on remote state estimation under multisensor roundrobin protocol,” Automatica, vol. 127, p. 109517, May 2021.

[25] 
X. H. Ge, Q. L. Han, M. Y. Zhong, and X. M. Zhang, “Distributed Krein spacebased attack detection over sensor networks under deception attacks,” Automatica, vol. 109, p. 108557, Nov. 2019.

[26] 
G. K. Befekadu, V. Gupta, and P. J. Antsaklis, “Risksensitive control under Markov modulated denialofservice (DoS) attack strategies,” IEEE Trans. Autom. Control, vol. 60, no. 12, pp. 3299–3304, Dec. 2015. doi: 10.1109/TAC.2015.2416926

[27] 
Y. Wang, Y. T. Li, Z. H. Yu, N. Q. Wu, and Z. W. Li, “Supervisory control of discreteevent systems under external attacks,” Inf. Sci., vol. 562, pp. 398–413, Jul. 2021. doi: 10.1016/j.ins.2021.03.033

[28] 
P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1, pp. 206–230, Jan. 1987. doi: 10.1137/0325013

[29] 
M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control of discreteevent systems under attacks,” Dyn. Games Appl., vol. 9, no. 4, pp. 965–983, Dec. 2019. doi: 10.1007/s1323501802853

[30] 
W. Jiang, L. Wen, J. Y. Zhan, and K. Jiang, “Design optimization of confidentialitycritical cyber physical systems with fault detection,” J. Syst. Archit., vol. 107, p. 101739, Aug. 2020.

[31] 
W. Yang, Z. Q. Zheng, G. R. Chen, Y. Tang, and X. F. Wang, “Security analysis of a distributed networked system under eavesdropping attacks,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 7, pp. 1254–1258, Jul. 2020. doi: 10.1109/TCSII.2019.2928558

[32] 
L. H. Peng, X. H. Cao, C. Y. Sun, Y. Cheng, and S. Jin, “Energy efficient jamming attack schedule against remote state estimation in wireless cyberphysical systems,” Neurocomputing, vol. 272, pp. 571–583, Jan. 2018. doi: 10.1016/j.neucom.2017.07.036

[33] 
H. Zhang, P. Cheng, L. Shi, and J. M. Chen, “Optimal denialofservice attack scheduling with energy constraint,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 3023–3028, Nov. 2015. doi: 10.1109/TAC.2015.2409905

[34] 
H. Zhang, P. Cheng, L. Shi, and J. M. Chen, “Optimal DoS attack scheduling in wireless networked control system,” IEEE Trans. Control Syst. Technol., vol. 24, no. 3, pp. 843–852, May 2016. doi: 10.1109/TCST.2015.2462741

[35] 
J. H. Qin, M. L. Li, L. Shi, and X. H. Yu, “Optimal denialofservice attack scheduling with energy constraint over packetdropping networks,” IEEE Trans. Autom. Control, vol. 63, no. 6, pp. 1648–1663, Jun. 2018. doi: 10.1109/TAC.2017.2756259

[36] 
J. H. Qin, M. L. Li, L. Shi, and Y. Kang, “Optimal denialofservice attack energy management over an SINRbased network,” arXiv: 1810.02558, 2018.

[37] 
B. B. Li, Y. H. Wu, J. R. Song, R. X. Lu, T. Li, and L. Zhao, “DeepFed: Federated deep learning for intrusion detection in industrial cyberphysical systems,” IEEE Trans. Ind. Inf., vol. 17, no. 8, pp. 5615–5624, Aug. 2021. doi: 10.1109/TII.2020.3023430

[38] 
L. Liu, O. De Vel, Q. L. Han, J. Zhang, and Y. Xiang, “Detecting and preventing cyber insider threats: A survey,” IEEE Commun. Surv. Tutor., vol. 20, no. 2, pp. 1397–1417, Feb. 2018. doi: 10.1109/COMST.2018.2800740

[39] 
F. O. Olowononi, D. B. Rawat, and C. M. Liu, “Resilient machine learning for networked cyber physical systems: A survey for machine learning security to securing machine learning for CPS,” IEEE Commun. Surv. Tutor., vol. 23, no. 1, pp. 524–552, Nov. 2021. doi: 10.1109/COMST.2020.3036778

[40] 
S. Ramesh, C. Yaashuwanth, K. Prathibanandhi, A. R. Basha, and T. Jayasankar, “An optimized deep neural network based DoS attack detection in wireless video sensor network,” J. Ambient Intell. Hum. Comput., 2021, DOI: 10.1007/s12652020027639.

[41] 
X. M. Zhang, Q. L. Han, X. H. Ge, D. R. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinic, vol. 7, no. 1, pp. 1–17, Jan. 2020. doi: 10.1109/JAS.2019.1911861

[42] 
C. Peng, J. C. Li, and M. R. Fei, “Resilient eventtriggering H_{∞} load frequency control for multiarea power systems with energylimited DoS attacks,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 4110–4118, Sep. 2017. doi: 10.1109/TPWRS.2016.2634122

[43] 
Y. C. Sun and G. H. Yang, “Eventtriggered resilient control for cyberphysical systems under asynchronous DoS attacks,” Inf. Sci., vol. 465, pp. 340–352, Oct. 2018. doi: 10.1016/j.ins.2018.07.030

[44] 
W. H. M. H. Heemels, M. C. F. Donkers, and A. R. Teel, “Periodic eventtriggered control for linear systems,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 847–861, Apr. 2013. doi: 10.1109/TAC.2012.2220443

[45] 
D. Yue, E. G. Tian, and Q. L. Han, “A delay system method for designing eventtriggered controllers of networked control systems,” IEEE Trans. Autom. Control, vol. 58, no. 2, pp. 475–481, Feb. 2013. doi: 10.1109/TAC.2012.2206694

[46] 
S. L. Hu, D. Yue, Q. L. Han, X. P. Xie, X. L. Chen, and C. X. Dou, “Observerbased eventtriggered control for networked linear systems subject to denialofservice attacks,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1952–1964, May 2020. doi: 10.1109/TCYB.2019.2903817

[47] 
S. L. Hu, D. Yue, X. L. Chen, Z. H. Cheng, and X. P. Xie, “Resilient H_{∞} filtering for eventtriggered networked systems under nonperiodic DoS jamming attacks,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 3, pp. 1392–1403, Mar. 2021.

[48] 
X. L. Chen, Y. G. Wang, and S. L. Hu, “Eventbased robust stabilization of uncertain networked control systems under quantization and denialofservice attacks,” Inf. Sci., vol. 459, pp. 369–386, Aug. 2018. doi: 10.1016/j.ins.2018.05.019

[49] 
H. S. Foroush and S. Martínez, “On eventtriggered control of linear systems under periodic denialofservice jamming attacks,” in Proc. IEEE 51st IEEE Conf. Decision and Control, Maui, USA, 2012, pp. 2551−2556.

[50] 
H. S. Foroush and S. Martinez, “On triggering control of singleinput linear systems under pulsewidth modulated DoS signals,” SIAM J. Control Optim., vol. 54, no. 6, pp. 3084–3105, Jan. 2016. doi: 10.1137/16M1069390

[51] 
D. J. Thuente and M. Acharya, “Intelligent jamming in wireless networks with applications to 802.11b and other networks,” in Proc. IEEE Conf. Military Communications, Washington, USA: IEEE, 2006, pp. 1075−1081.

[52] 
N. Zhao, P. Shi, W. Xing, and J. Chambers, “Observerbased eventtriggered approach for stochastic networked control systems under denial of service attacks,” IEEE Trans. Control Netw. Syst., vol. 8, no. 1, pp. 158–167, Mar. 2021. doi: 10.1109/TCNS.2020.3035760

[53] 
L. Guo, H. Yu, and F. Hao, “Eventtriggered control for stochastic networked control systems against DenialofService attacks,” Inf. Sci., vol. 527, pp. 51–69, Jul. 2020. doi: 10.1016/j.ins.2020.03.045

[54] 
M. Sathishkumar and Y. C. Liu, “Resilient eventtriggered faulttolerant control for networked control systems with randomly occurring nonlinearities and DoS attacks,” Int. J. Syst. Sci., vol. 51, no. 14, pp. 2712–2732, Aug. 2020. doi: 10.1080/00207721.2020.1801880

[55] 
S. Feng and P. Tesi, “Resilient control under denialofservice: Robust design,” Automatica, vol. 79, pp. 42–51, May 2017. doi: 10.1016/j.automatica.2017.01.031

[56] 
H. T. Sun, C. Peng, T. C. Yang, H. Zhang, and W. L. He, “Resilient control of networked control systems with stochastic denial of service attacks,” Neurocomputing, vol. 270, pp. 170–177, Dec. 2017. doi: 10.1016/j.neucom.2017.02.093

[57] 
H. H. Yuan and Y. Q. Xia, “Resilient strategy design for cyberphysical system under DoS attack over a multichannel framework,” Inf. Sci., vol. 454−455, pp. 312–327, Jul. 2018. doi: 10.1016/j.ins.2018.04.082

[58] 
X. M. Zhang, Q. L. Han, X. H. Ge, and L. Ding, “Resilient control design based on a sampleddata model for a class of networked control systems under denialofservice attacks,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3616–3626, Aug. 2020. doi: 10.1109/TCYB.2019.2956137

[59] 
G. K. Befekadu, V. Gupta, and P. J. Antsaklis, “Risksensitive control under a class of denialofservice attack models,” in Proc. American Control Conf., San Francisco, CA, USA, 2011, pp. 643−648.

[60] 
G. K. Befekadu, V. Gupta, and P. J. Antsaklis, “Risksensitive control under a Markov modulated denialofservice attack model,” in Proc. 50th IEEE Conf. Decision and Control and European Control Conf., Orlando, FL, USA, 2011, pp. 5714−5719.

[61] 
W. Yang, Y. Zhang, G. R. Chen, C. Yang, and L. Shi, “Distributed filtering under false data injection attacks,” Automatica, vol. 102, pp. 34–44, Apr. 2019. doi: 10.1016/j.automatica.2018.12.027

[62] 
T. Y. Zhang and D. Ye, “Distributed secure control against denialofservice attacks in cyberphysical systems based on Kconnected communication topology,” IEEE Trans. Cybern., vol. 50, no. 7, pp. 3094–3103, Jul. 2020. doi: 10.1109/TCYB.2020.2973303

[63] 
A. Y. Lu and G. H. Yang, “Distributed consensus control for multiagent systems under denialofservice,” Inf. Sci., vol. 439440, pp. 95–107, May 2018. doi: 10.1016/j.ins.2018.02.008

[64] 
Y. Xu, M. Fang, P. Shi, and Z. G. Wu, “Eventbased secure consensus of mutiagent systems against DoS attacks,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3468–3476, Aug. 2020. doi: 10.1109/TCYB.2019.2918402

[65] 
D. Zhang, Y. P. Shen, S. Q. Zhou, X. W. Dong, and L. Yu, “Distributed secure platoon control of connected vehicles subject to DoS attack: Theory and application,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 11, pp. 7269–7278, Nov. 2021. doi: 10.1109/TSMC.2020.2968606

[66] 
C. W. Wu, L. G. Wu, J. X. Liu, and Z. X. Jiang, “Active defensebased resilient sliding mode control under denialofservice attacks,” IEEE Trans. Inf. Foren. Sec., vol. 15, pp. 237–249, May 2020. doi: 10.1109/TIFS.2019.2917373

[67] 
C. De Persis and P. Tesi, “Inputtostate stabilizing control under denialofservice,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 2930–2944, Nov. 2015. doi: 10.1109/TAC.2015.2416924

[68] 
G. Y. Wu, J. Sun, and J. Chen, “Optimal data injection attacks in cyberphysical systems,” IEEE Trans. Cybern., vol. 48, no. 12, pp. 3302–3312, Dec. 2018. doi: 10.1109/TCYB.2018.2846365

[69] 
Y. Chen, S. Kar, and J. M. F. Moura, “Optimal attack strategies subject to detection constraints against cyberphysical systems,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1157–1168, Sep. 2018. doi: 10.1109/TCNS.2017.2690399

[70] 
Y. L. Mo and B. Sinopoli, “On the performance degradation of cyberphysical systems under stealthy integrity attacks,” IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2618–2624, Sep. 2016. doi: 10.1109/TAC.2015.2498708

[71] 
Y. L. Mo and B. Sinopoli, “Secure control against replay attacks,” in Proc. 47th Ann. Allerton Conf. Communication, Control, and Computing, Monticello, IL, USA, 2009, pp. 911−918.

[72] 
Y. L. Mo and B. Sinopoli, “Integrity attacks on cyberphysical systems,” in Proc. 1st Int. Conf. High Confidence Networked Systems, Beijing, China, 2012, pp. 47−54.

[73] 
J. P. Hao, R. J. Piechocki, D. Kaleshi, W. H. Chin, and Z. Fan, “Sparse malicious false data injection attacks and defense mechanisms in smart grids,” IEEE Trans. Ind. Inf., vol. 11, no. 5, pp. 1–12, Oct. 2015. doi: 10.1109/TII.2015.2475695

[74] 
Z. Y. Guo, D. W. Shi, K. H. Johansson, and L. Shi, “Optimal linear cyberattack on remote state estimation,” IEEE Trans. Control Netw. Syst., vol. 4, no. 1, pp. 4–13, Mar. 2017. doi: 10.1109/TCNS.2016.2570003

[75] 
S. Wu, Z. Y. Guo, D. W. Shi, K. H. Johansson, and L. Shi, “Optimal innovationbased deception attack on remote state estimation,” in Proc. American Control Conf., Seattle, WA, USA, 2018, pp. 3017−3022.

[76] 
E. Mousavinejad, F. W. Yang, Q. L. Han, and L. Vlacic, “A novel cyber attack detection method in networked control systems,” IEEE Trans. Cybern., vol. 48, no. 11, pp. 3254–3264, Nov. 2018. doi: 10.1109/TCYB.2018.2843358

[77] 
C. Z. Bai, F. Pasqualetti, and V. Gupta, “Security in stochastic control systems: Fundamental limitations and performance bounds,” in Proc. American Control Conf., Chicago, IL, USA, 2015, pp. 195−200.

[78] 
C. Z. Bai, F. Pasqualetti, and V. Gupta, “Datainjection attacks in stochastic control systems: Detectability and performance tradeoffs,” Automatica, vol. 82, pp. 251–260, Aug. 2017. doi: 10.1016/j.automatica.2017.04.047

[79] 
E. Kung, S. Dey, and L. Shi, “The performance and limitations of ϵstealthy attacks on higher order systems,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 941–947, Feb. 2017. doi: 10.1109/TAC.2016.2565379

[80] 
Q. R. Zhang, K. Liu, Y. Q. Xia, and A. Y. Ma, “Optimal stealthy deception attack against cyberphysical systems,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3963–3972, Sep. 2020. doi: 10.1109/TCYB.2019.2912622

[81] 
R. Su, “Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations,” Automatica, vol. 94, pp. 35–44, Aug. 2018. doi: 10.1016/j.automatica.2018.04.006

[82] 
R. MeiraGóes, E. Kang, R. H. Kwong, and S. Lafortune, “Synthesis of sensor deception attacks at the supervisory layer of cyber–physical systems,” Automatica, vol. 121, p. 109172, Nov. 2020.

[83] 
B. B. Li, R. X. Lu, K. K. R. Choo, W. Wang, and S. Luo, “On reliability analysis of smart grids under topology attacks: A stochastic petri net approach,” ACM Trans. CyberPhys. Syst., vol. 3, no. 1, pp. 1–25, Jan. 2018.

[84] 
O. Kosut, L. Y. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks on the smart grid,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 645–658, Dec. 2011. doi: 10.1109/TSG.2011.2163807

[85] 
L. Y. Jia, R. J. Thomas, and L. Tong, “Impacts of malicious data on realtime price of electricity market operations,” in Proc. 45th Hawaii Int. Conf. System Sciences, Maui, HI, USA, 2012, pp. 1907−1914.

[86] 
L. Xie, Y. L. Mo, and B. Sinopoli, “Integrity data attacks in power market operations,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 659–666, Dec. 2011. doi: 10.1109/TSG.2011.2161892

[87] 
R. L. Deng, G. X. Xiao, and R. X. Lu, “Defending against false data injection attacks on power system state estimation,” IEEE Trans. Ind. Inf., vol. 13, no. 1, pp. 198–207, Feb. 2017. doi: 10.1109/TII.2015.2470218

[88] 
H. Z. Fang, N. Tian, Y. B. Wang, M. C. Zhou, and M. A. Haile, “Nonlinear Bayesian estimation: From Kalman filtering to a broader horizon,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 401–417, Mar. 2018. doi: 10.1109/JAS.2017.7510808

[89] 
C. Kwon, W. Y. Liu, and I. Hwang, “Security analysis for cyberphysical systems against stealthy deception attacks,” in Proc. American Control Conf., Washington, DC, USA, 2013, pp. 3344−3349.

[90] 
Y. Z. Li, L. Shi, and T. W. Chen, “Detection against linear deception attacks on multisensor remote state estimation,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 846–856, Sep. 2018. doi: 10.1109/TCNS.2017.2648508

[91] 
Q. Li, B. Shen, Y. R. Liu, and F. E. Alsaadi, “Eventtriggered H_{∞} state estimation for discretetime stochastic genetic regulatory networks with Markovian jumping parameters and timevarying delays,” Neurocomputing, vol. 174, pp. 912–920, Jan. 2016. doi: 10.1016/j.neucom.2015.10.017

[92] 
V. Ugrinovskii, “Distributed robust estimation over randomly switching networks using H_{∞} consensus,” Automatica, vol. 49, no. 1, pp. 160–168, Jan. 2013. doi: 10.1016/j.automatica.2012.09.010

[93] 
S. Mishra, Y. Shoukry, N. Karamchandani, S. N. Diggavi, and P. Tabuada, “Secure state estimation against sensor attacks in the presence of noise,” IEEE Trans. Control Netw. Syst., vol. 4, no. 1, pp. 49–59, Mar. 2017. doi: 10.1109/TCNS.2016.2606880

[94] 
K. Liu, H. Guo, Q. R. Zhang, and Y. Q. Xia, “Distributed secure filtering for discretetime systems under RoundRobin protocol and deception attacks,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3571–3580, Aug. 2020. doi: 10.1109/TCYB.2019.2897366

[95] 
L. F. Ma, Z. D. Wang, Q. L. Han, and H. K. Lam, “Varianceconstrained distributed filtering for timevarying systems with multiplicative noises and deception attacks over sensor networks,” IEEE Sens. J., vol. 17, no. 7, pp. 2279–2288, Apr. 2017. doi: 10.1109/JSEN.2017.2654325

[96] 
H. F. Song, D. R. Ding, H. L. Dong, and Q. L. Han, “Distributed maximum correntropy filtering for stochastic nonlinear systems under deception attacks,” IEEE Trans. Cybern., 2020, DOI: 10.1109/TCYB.2020.3016093.

[97] 
Y. L. Mo, R. Chabukswar, and B. Sinopoli, “Detecting integrity attacks on SCADA systems,” IEEE Trans. Control Syst. Technol., vol. 22, no. 4, pp. 1396–1407, Jul. 2014. doi: 10.1109/TCST.2013.2280899

[98] 
D. B. Rawat and C. Bajracharya, “Detection of false data injection attacks in smart grid communication systems,” IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1652–1656, Oct. 2015. doi: 10.1109/LSP.2015.2421935

[99] 
J. Miloševič, T. Tanaka, H. Sandberg, and K. H. Johansson, “Analysis and mitigation of bias injection attacks against a Kalman filter,” IFACPapersOnLine, vol. 50, no. 1, pp. 8393–8398, Jul. 2017. doi: 10.1016/j.ifacol.2017.08.1564

[100] 
A. J. Gallo, M. S. Turan, P. Nahata, F. Boem, T. Parisini, and G. FerrariTrecate, “Distributed cyberattack detection in the secondary control of DC microgrids,” in Proc. European Control Conf., Limassol, Cyprus, 2018, pp. 344−349.

[101] 
X. Y. Luo, X. Y. Wang, X. Y. Pan, and X. P. Guan, “Detection and isolation of false data injection attack for smart grids via unknown input observers,” IET Gener. Transm. Distrib., vol. 13, no. 8, pp. 1277–1286, Apr. 2019. doi: 10.1049/ietgtd.2018.5139

[102] 
X. Y. Wang, X. Y. Luo, Y. Y. Zhang, and X. P. Guan, “Detection and isolation of false data injection attacks in smart grids via nonlinear interval observer,” IEEE Internet Things J., vol. 6, no. 4, pp. 6498–6512, Aug. 2019. doi: 10.1109/JIOT.2019.2916670

[103] 
Z. Y. Guo, D. W. Shi, K. H. Johansson, and L. Shi, “Worstcase stealthy innovationbased linear attack on remote state estimation,” Automatica, vol. 89, pp. 117–124, 2018. doi: 10.1016/j.automatica.2017.11.018

[104] 
J. H. Huang, D. W. C. Ho, F. F. Li, W. Yang, and Y. Tang, “Secure remote state estimation against linear maninthemiddle attacks using watermarking,” Automatica, vol. 121, p. 109182, Nov. 2020.

[105] 
D. Wang, J. H. Huang, Y. Tang, and F. F. Li, “A watermarking strategy against linear deception attacks on remote state estimation under KL divergence,” IEEE Trans. Ind. Inf., vol. 17, no. 5, pp. 3273–3281, May 2021. doi: 10.1109/TII.2020.3009874

[106] 
A. Naha, A. Teixeira, A. Ahlen, and S. Dey, “Quickest detection of deception attacks in networked control systems with physical watermarking,” arXiv: 2101.01466, 2021.

[107] 
W. L. Chen, J. Hu, Z. H. Wu, X. Y. Yu, and D. Y. Chen, “Finitetime memory fault detection filter design for nonlinear discrete systems with deception attacks,” Int. J. Syst. Sci., vol. 51, no. 8, pp. 1464–1481, May 2020. doi: 10.1080/00207721.2020.1765219

[108] 
D. R. Ding, Q. L. Han, Z. D. Wang, and X. H. Ge, “Recursive filtering of distributed cyberphysical systems with attack detection,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 10, pp. 6466–6476, Oct. 2021. doi: 10.1109/TSMC.2019.2960541

[109] 
H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and control for cyberphysical systems under adversarial attacks,” IEEE Trans. Autom. Control, vol. 59, no. 6, pp. 1454–1467, Jun. 2014. doi: 10.1109/TAC.2014.2303233

[110] 
C. H. Xie and G. H. Yang, “Observerbased attackresilient control for linear systems against FDI attacks on communication links from controller to actuators,” Int. J. Robust Nonlinear Control, vol. 28, no. 15, pp. 4382–4403, Oct. 2018.

[111] 
Y. Shoukry and P. Tabuada, “Eventtriggered state observers for sparse sensor noise/attacks,” IEEE Trans. Autom. Control, vol. 61, no. 8, pp. 2079–2091, Aug. 2016. doi: 10.1109/TAC.2015.2492159

[112] 
M. Pajic, I. Lee, and G. J. Pappas, “Attackresilient state estimation for noisy dynamical systems,” IEEE Trans. Control Netw. Syst., vol. 4, no. 1, pp. 82–92, Mar. 2017. doi: 10.1109/TCNS.2016.2607420

[113] 
A. Y. Lu and G. H. Yang, “Eventtriggered secure observerbased control for cyberphysical systems under adversarial attacks,” Inf. Sci., vol. 420, pp. 96–109, Dec. 2017. doi: 10.1016/j.ins.2017.08.057

[114] 
D. R. Ding, Q. L. Han, Z. D. Wang, and X. H. Ge, “A survey on modelbased distributed control and filtering for industrial cyberphysical systems,” IEEE Trans. Ind. Inf., vol. 15, no. 5, pp. 2483–2499, May 2019. doi: 10.1109/TII.2019.2905295

[115] 
M. H. Zhu and S. Martínez, “On distributed constrained formation control in operator—vehicle adversarial networks,” Automatica, vol. 49, no. 12, pp. 3571–3582, Dec. 2013. doi: 10.1016/j.automatica.2013.09.031

[116] 
Y. Liu, H. H. Xin, Z. H. Qu, and D. Q. Gan, “An attackresilient cooperative control strategy of multiple distributed generators in distribution networks,” IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2923–2932, Nov. 2016. doi: 10.1109/TSG.2016.2542111

[117] 
A. Bidram, B. Poudel, L. Damodaran, R. Fierro, and J. M. Guerrero, “Resilient and cybersecure distributed control of inverterbased islanded microgrids,” IEEE Trans. Ind. Inf., vol. 16, no. 6, pp. 3881–3894, Jun. 2020. doi: 10.1109/TII.2019.2941748

[118] 
N. Yassaie, M. Hallajiyan, I. Sharifi, and H. A. Talebi, “Resilient control of multimicrogrids against false data injection attack,” ISA Trans., vol. 110, pp. 238–246, Apr. 2021. doi: 10.1016/j.isatra.2020.10.030

[119] 
C. Deng, Y. Wang, C. Y. Wen, Y. Xu, and P. F. Lin, “Distributed resilient control for energy storage systems in cyberphysical microgrids,” IEEE Trans. Ind. Inf., vol. 17, no. 2, pp. 1331–1341, Feb. 2020.

[120] 
C. Deng and G. H. Yang, “Distributed adaptive faulttolerant control approach to cooperative output regulation for linear multiagent systems,” Automatica, vol. 103, pp. 62–68, May 2019. doi: 10.1016/j.automatica.2019.01.013

[121] 
C. Deng, G. H. Yang, and M. J. Er, “Decentralized faulttolerant MRAC for a class of largescale systems with timevarying delays and actuator faults,” J. Process Control, vol. 75, pp. 171–186, Mar. 2019. doi: 10.1016/j.jprocont.2018.12.006

[122] 
W. Ao, Y. D. Song, and C. Y. Wen, “Distributed secure state estimation and control for CPSs under sensor attacks,” IEEE Trans. Cybern., vol. 50, no. 1, pp. 259–269, Jan. 2020. doi: 10.1109/TCYB.2018.2868781

[123] 
L. K. Carvalho, Y. C. Wu, R. Kwong, and S. Lafortune, “Detection and prevention of actuator enablement attacks in supervisory control systems,” in Proc. 13th Int. Workshop on Discrete Event Systems, Xi’an, China, 2016, pp. 298−305.

[124] 
L. K. Carvalho, Y. C. Wu, R. Kwong, and S. Lafortune, “Detection and mitigation of classes of attacks in supervisory control systems,” Automatica, vol. 97, pp. 121–133, Nov. 2018. doi: 10.1016/j.automatica.2018.07.017

[125] 
P. M. Lima, M. V. S. Alves, L. K. Carvalho, and M. V. Moreira, “Security against network attacks in supervisory control systems,” IFACPapersOnLine, vol. 50, no. 1, pp. 12333–12338, Jul. 2017. doi: 10.1016/j.ifacol.2017.08.2161

[126] 
P. M. Lima, L. K. Carvalho, and M. V. Moreira, “Detectable and undetectable network attack security of cyberphysical systems,” IFACPapersOnLine, vol. 51, no. 7, pp. 179–185, Jan. 2018. doi: 10.1016/j.ifacol.2018.06.298

[127] 
P. M. Lima, M. V. S. Alves, L. K. Carvalho, and M. V. Moreira, “Security against communication network attacks of cyberphysical systems,” J. Control. Autom. Electr. Syst., vol. 30, no. 1, pp. 125–135, Feb. 2019. doi: 10.1007/s4031301804209

[128] 
R. MeiraGóes, H. Marchand, and S. Lafortune, “Towards resilient supervisors against sensor deception attacks,” in Proc. IEEE 58th Conf. Decision and Control, Nice, France, 2019, pp. 5144−5149.

[129] 
R. MeiraGóes, S. Lafortune, and H. Marchand, “Synthesis of supervisors robust against sensor deception attacks,” IEEE Trans. Autom. Control, vol. 66, no. 10, pp. 4990–4997, Oct. 2021. doi: 10.1109/TAC.2021.3051459

[130] 
D. You, S. G. Wang, and C. Seatzu, “A Livenessenforcing supervisor tolerant to sensorreading modification attacks,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 4, pp. 2398−2411, Apr. 2022.

[131] 
G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “A parity code based fault detection for an implementation of the advanced encryption standard,” in Proc. 17th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, Vancouver, BC, Canada, 2002, pp. 51−59.

[132] 
J. Blömer and J. P. Seifert, “Fault based cryptanalysis of the advanced encryption standard (AES),” in Porc. 7th Int. Conf. Financial Cryptography, Guadeloupe, French West Indies, 2003, pp. 162−181.

[133] 
S. BayatSarmadi, M. Mozaffari Kermani, R. Azarderakhsh, and C. Y. Lee, “Dualbasis superserial multipliers for secure applications and lightweight cryptographic architectures,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 61, no. 2, pp. 125–129, Feb. 2014. doi: 10.1109/TCSII.2013.2291075

[134] 
Y. J. Chen, L. C. Wang, and C. H. Liao, “Eavesdropping prevention for network coding encrypted cloud storage systems,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 8, pp. 2261–2273, Aug. 2016. doi: 10.1109/TPDS.2015.2486772

[135] 
K. Wang, H. Gao, X. L. Xu, J. F. Jiang, and D. Yue, “An energyefficient reliable data transmission scheme for complex environmental monitoring in underwater acoustic sensor networks,” IEEE Sens. J., vol. 16, no. 11, pp. 4051–4062, Jun. 2016. doi: 10.1109/JSEN.2015.2428712

[136] 
L. Yuan, K. Wang, T. Miyazaki, S. Guo, and M. Wu, “Optimal transmission strategy for sensors to defend against eavesdropping and jamming attacks,” in Proc. IEEE Int. Conf. Communications, Paris, France, 2017, pp. 1−6.

[137] 
A. Chapman, M. NabiAbdolyousefi, and M. Mesbahi, “Controllability and observability of networkofnetworks via Cartesian products,” IEEE Trans. Autom. Control, vol. 59, no. 10, pp. 2668–2679, Oct. 2014. doi: 10.1109/TAC.2014.2328757

[138] 
B. B. Wang, L. Gao, Y. Gao, Y. Deng, and Y. Wang, “Controllability and observability analysis for vertex domination centrality in directed networks,” Sci. Rep., vol. 4, no. 1, pp. 1–10, Jun. 2014.

[139] 
T. Zhou, “On the controllability and observability of networked dynamic systems,” Automatica, vol. 52, pp. 63–75, Feb. 2015. doi: 10.1016/j.automatica.2014.10.121

[140] 
L. W. An and G. H. Yang, “Opacity enforcement for confidential robust control in linear cyberphysical systems,” IEEE Trans. Autom. Control, vol. 65, no. 3, pp. 1234–1241, Mar. 2020. doi: 10.1109/TAC.2019.2925498

[141] 
S. Yang, J. Y. Hou, X. Yin, and S. Y. Li, “Opacity of networked supervisory control systems over insecure communication channels,” IEEE Trans. Control Netw. Syst., vol. 8, no. 2, pp. 884–896, Jun. 2021. doi: 10.1109/TCNS.2021.3050131

[142] 
X. Yin, Z. J. Li, W. L. Wang, and S. Y. Li, “Infinitestep opacity and Kstep opacity of stochastic discreteevent systems,” Automatica, vol. 99, pp. 266–274, Jan. 2019. doi: 10.1016/j.automatica.2018.10.049

[143] 
X. Yin and S. Y. Li, “Verification of opacity in networked supervisory control systems with insecure control channels,” in Proc. IEEE Conf. Decision and Control, Miami, FL, USA, 2018, pp. 4851−4856.

[144] 
Y. Tong, Z. W. Li, C. Seatzu, and A. Giua, “Currentstate opacity enforcement in discrete event systems under incomparable observations,” Discrete Event Dyn. Syst., vol. 28, no. 2, pp. 161–182, Jun. 2018. doi: 10.1007/s1062601702647

[145] 
R. Jacob, J. J. Lesage, and J. M. Faure, “Overview of discrete event systems opacity: Models, validation, and quantification,” Annu. Rev. Control, vol. 41, pp. 135–146, Jun. 2016. doi: 10.1016/j.arcontrol.2016.04.015

[146] 
J. L. Liu, Y. D. Wang, J. D. Cao, D. Yue, and X. P. Xie, “Secure adaptiveeventtriggered filter design with input constraint and hybrid cyber attack,” IEEE Trans. Cybern., vol. 51, no. 8, pp. 4000–4010, Aug. 2021. doi: 10.1109/TCYB.2020.3003752

[147] 
C. Q. Yang, Z. G. Shi, H. Zhang, J. F. Wu, and X. F. Shi, “Multiple attacks detection in cyberphysical systems using random finite set theory,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 4066–4075, Sep. 2020. doi: 10.1109/TCYB.2019.2912939

[148] 
X. Zhao, C. S. Liu, and E. G. Tian, “Finitehorizon tracking control for a class of stochastic systems subject to input constraints and hybrid cyber attacks,” ISA Trans., vol. 104, pp. 93–100, Sep. 2020. doi: 10.1016/j.isatra.2019.02.025

[149] 
B. A. S. AlRimy, M. A. Maarof, and S. Z. M. Shaid, “Ransomware threat success factors, taxonomy, and countermeasures: A survey and research directions,” Comput. Secur., vol. 74, pp. 144–166, May 2018. doi: 10.1016/j.cose.2018.01.001

[150] 
H. Oz, A. Aris, A. Levi, and A. S. Uluagac, “A survey on ransomware: Evolution, taxonomy, and defense solutions,” arXiv: 2102.06249, 2021.

[151] 
S. Y. Xiao, X. H. Ge, Q. L. Han, and Y. J. Zhang, “Secure distributed adaptive platooning control of automated vehicles over vehicular adhoc networks under denialofservice attacks,” IEEE Trans. Cybern., 2021, DOI: 10.1109/TCYB.2021.3074318.
