Citation: | T. Wang, F. Zhou, Y. Wu, J. Zhao, and W. Wang, “A multi-condition sequential network ensemble for industrial energy storage prediction considering the condition switching characteristics,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–12, Feb. 2025. |
[1] |
V. B. de Oliveira Junior, J. G. C. Pena, and J. L. F. Salles, “An improved plant-wide multiperiod optimization model of a byproduct gas supply system in the iron and steel-making process,” Appl. Energy, vol. 164, pp. 462–474, Feb. 2016. doi: 10.1016/j.apenergy.2015.11.043
|
[2] |
Z. Han, J. Zhao, Q. Liu, and W. Wang, “Granular-computing based hybrid collaborative fuzzy clustering for long-term prediction of multiple gas holders levels,” Inf. Sci., vol. 330, pp. 175–185, Feb. 2016. doi: 10.1016/j.ins.2015.10.020
|
[3] |
F. Jin, J. Zhao, Y. Liu, W. Wang, and Q. Xu, “A scheduling approach with uncertainties in generation and consumption for converter gas system in steel industry,” Inf. Sci., vol. 546, pp. 312–328, Feb. 2021. doi: 10.1016/j.ins.2020.06.063
|
[4] |
I. Matino, S. Dettori, V. Colla, V. Weber, and S. Salame, “Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management,” Appl. Energy, vol. 253, p. 113578, Nov. 2019. doi: 10.1016/j.apenergy.2019.113578
|
[5] |
S.-L. Jiang, G. Peng, I. D. L. Bogle, and Z. Zheng, “Two-stage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants,” Appl. Energy, vol. 306, p. 118022, Jan. 2022. doi: 10.1016/j.apenergy.2021.118022
|
[6] |
Z. Han, W. Pedrycz, J. Zhao, and W. Wang, “Hierarchical granular computing-based model and its reinforcement structural learning for construction of long-term prediction intervals,” IEEE Trans. Cybern., vol. 52, no. 1, pp. 666–676, Jan. 2022. doi: 10.1109/TCYB.2020.2964011
|
[7] |
J. Zhao, T. Wang, W. Pedrycz, and W. Wang, “Granular prediction and dynamic scheduling based on adaptive dynamic programming for the blast furnace gas system,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 2201–2214, Apr. 2021. doi: 10.1109/TCYB.2019.2901268
|
[8] |
L. Su, J. Zhao, and W. Wang, “Distributed adaptive fuzzy modeling for industrial gas-electricity networks with multioperation modes,” IEEE Trans. Ind. Inf., vol. 19, no. 5, pp. 6647–6658, May 2023.
|
[9] |
H. Zhou, S. Gao, Y. Xie, C. Zhang, and J. Liu, “Multi-condition wear prediction and assessment of milling cutters based on linear discriminant analysis and ensemble methods,” Measurement, vol. 216, p. 112900, Jul. 2023. doi: 10.1016/j.measurement.2023.112900
|
[10] |
T. Wang, J. Zhao, H. Leung, and W. Wang, “A condition knowledge representation and feedback learning framework for dynamic optimization of integrated energy systems,” IEEE Trans. Cybern., vol. 54, no. 5, pp. 2880–2890, May 2024. doi: 10.1109/TCYB.2023.3234077
|
[11] |
K. Zhang, Z. Zheng, M. Zhu, H. Chen, T. Guo, K. Zhang, S. Ma, and L. Sun, “Hybrid prediction method of blast furnace gas generation considering multi-operation modes in steel plants near the city,” Sustain. Energy Technol. Assess., vol. 56, p. 103031, Mar. 2023.
|
[12] |
W. Li, L. Chen, Z. Han, J. Zhao, and W. Wang, “Multi-operation conditions prediction based on least square support vector machine for blast furnace gas system in steel industry,” in Proc. 7th Int. Conf. Information, Cybern., and Computational Social Systems, Guangzhou, China, 2020, pp. 19–24.
|
[13] |
K. Bandara, C. Bergmeir, and H. Hewamalage, “LSTM-MSNet: Leveraging forecasts on sets of related time series with multiple seasonal patterns,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 4, pp. 1586–1599, Apr. 2021. doi: 10.1109/TNNLS.2020.2985720
|
[14] |
A. Essien and C. Giannetti, “A deep learning model for smart manufacturing using convolutional LSTM neural network autoencoders,” IEEE Trans. Ind. Inf., vol. 16, no. 9, pp. 6069–6078, Sep. 2020. doi: 10.1109/TII.2020.2967556
|
[15] |
S. Liu and W. Sun, “Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation,” Energy, vol. 262, p. 125498, Jan. 2023. doi: 10.1016/j.energy.2022.125498
|
[16] |
T. Wang, H. Leung, J. Zhao, and W. Wang, “Multiseries featural LSTM for partial periodic time-series prediction: A case study for steel industry,” IEEE Trans. Instrum. Meas., vol. 69, no. 9, pp. 5994–6003, Sept. 2020. doi: 10.1109/TIM.2020.2967247
|
[17] |
J. Liu, A. Shahroudy, D. Xu, A. C. Kot, and G. Wang, “Skeleton-based action recognition using spatio-temporal LSTM network with trust gates,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 12, pp. 3007–3021, Dec. 2018. doi: 10.1109/TPAMI.2017.2771306
|
[18] |
T. Wang, J. Zhao, Q. Liu, and W. Wang, “Granular-based multilayer spatiotemporal network with control gates for energy prediction of steel industry,” IEEE Trans. Instrum. Meas., vol. 70, p. 2516512, Oct. 2021.
|
[19] |
C. Zhang, P. Lim, A.-K. Qin, and K. C. Tan, “Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2306–2318, Oct. 2017. doi: 10.1109/TNNLS.2016.2582798
|
[20] |
Z. Li, D. Wu, C. Hu, and J. Terpenny, “An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction,” Reliab. Eng. Syst. Saf., vol. 184, pp. 110–122, Apr. 2019. doi: 10.1016/j.ress.2017.12.016
|
[21] |
Y. Chen, H. Chen, P. Ye, Y. Lv, and F.-Y. Wang, “Acting as a decision maker: Traffic-condition-aware ensemble learning for traffic flow prediction,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 4, pp. 3190–3200, Apr. 2020.
|
[22] |
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. doi: 10.1162/neco.1997.9.8.1735
|
[23] |
F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive survey on transfer learning,” Proc. IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021. doi: 10.1109/JPROC.2020.3004555
|
[24] |
Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris, “Spottune: Transfer learning through adaptive fine-tuning,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 4800–4809.
|
[25] |
S. Gong, C. Shao, and L. Zhu, “Energy efficiency evaluation in ethylene production process with respect to operation classification,” Energy, vol. 118, pp. 1370–1379, Jan. 2017. doi: 10.1016/j.energy.2016.11.012
|
[26] |
M. H. D. M. Ribeiro and L. dos Santos Coelho, “Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series,” Appl. Soft Comput., vol. 86, p. 105837, Jan. 2020. doi: 10.1016/j.asoc.2019.105837
|
[27] |
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015. doi: 10.1038/nature14539
|
[28] |
L. Jiang, L. Wu, Y Tian, and Y. Li, “An ensemble fault diagnosis method for rotating machinery based on wavelet packet transform and convolutional neural networks,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 236, no. 24, pp. 11600–11612, Dec. 2022. doi: 10.1177/09544062221102721
|
[29] |
S. Davoodi, H. V. Thanh, D. A. Wood, M. Mehrad, V. S. Rukavishnikov, and Z. Dai, “Machine-learning predictions of solubility and residual trapping indexes of carbon dioxide from global geological storage sites,” Exp. Syst. Appl., vol. 222, p. 119796, Jul. 2023. doi: 10.1016/j.eswa.2023.119796
|
[30] |
S.-Y. Shih, F.-K. Sun, and H.-Y. Lee, “Temporal pattern attention for multivariate time series forecasting,” Mach. Learn., vol. 108, pp. 1421–1441, 2019.
|