Citation: | X. Li, X. Ban, H. Qiao, Z. Yuan, H.-N. Dai, C. Yao, Y. Guo, Mohammad S. Obaidat, and George Q. Huang, “Multi-scale time series segmentation network based on Eddy current testing for detecting surface metal defects,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 1–11, Mar. 2025. |
[1] |
M. Pan, Y. He, G. Tian, D. Chen, and F. Luo, “Pec frequency band selection for locating defects in two-layer aircraft structures with air gap variations,” IEEE Trans. Instrumentation and Measurement, vol. 62, no. 10, pp. 2849–2856, 2013. doi: 10.1109/TIM.2013.2239892
|
[2] |
A. N. AbdAlla, M. A. Faraj, F. Samsuri, D. Rifai, K. Ali, and Y. AlDouri, “Challenges in improving the performance of Eddy current testing,” Measurement and Control, vol. 52, no. 1–2, pp. 46–64, 2019. doi: 10.1177/0020294018801382
|
[3] |
X. Huang, W. Qu, and L. Xiao, “Identification method of internal leakage in nuclear power plants valves using convolutional block attention module,” Nuclear Engineering and Design, vol. 424, p. 113239, 2024.
|
[4] |
G. D’Angelo, M. Laracca, S. Rampone, and G. Betta, “Fast Eddy current testing defect classification using Lissajous figures,” IEEE Trans. Instrumentation and Measurement, vol. 67, no. 4, pp. 821–830, 2018. doi: 10.1109/TIM.2018.2792848
|
[5] |
Y. Tao, H. Xu, Z. Chen, R. Huang, Q. Ran, Q. Zhao, H. Yan, Z. Zhang, and W. Yin, “Automatic feature extraction method for crack detection in eddy current testing,” in Proc. IEEE Int. Instrumentation and Measurement Technology Conf., 2019, pp. 1–6.
|
[6] |
H. Phan, K. Mikkelsen, O. Y. Chén, P. Koch, A. Mertins, and M. De Vos, “x “Sleeptransformer: Automatic sleep staging with interpretability and uncertainty quantification,” IEEE Trans. Biomedical Engineering, vol. 69, no. 8, pp. 2456–2467, 2022. doi: 10.1109/TBME.2022.3147187
|
[7] |
G. Li, W. Yan, and Z. Wu, “Discovering shapelets with key points in time series classification,” Expert Systems Applications, vol. 132, pp. 76–86, 2019. doi: 10.1016/j.eswa.2019.04.062
|
[8] |
T. A. Alvarenga, A. L. Carvalho, L. M. Honorio, A. S. Cerqueira, L. M. Filho, and R. A. Nobrega, “Detection and classification system for rail surface defects based on Eddy current,” Sensors, vol. 21, p. 23, 2021.
|
[9] |
T. Meng, Y. Tao, Z. Chen, et al., “Depth evaluation for metal surface defects by Eddy current testing using deep residual convolutional neural networks,” IEEE Trans. Instrumentation and Measurement, vol. 70, pp. 1–13, 2021.
|
[10] |
X. Fu, C. Zhang, X. Peng, L. Jian, and Z. Liu, “Towards end-toend pulsed Eddy current classification and regression with CNN,” in Proc. IEEE Int. Instrumentation and Measurement Technology Conf., 2019, pp. 1–5.
|
[11] |
M. Afrasiabi, H. Khotanlou, and M. Mansoorizadeh, “DTW-CNN: Time series-based human interaction prediction in videos using CNN-extracted features,” The Visual Computer, vol. 36, pp. 1127–1139, 2020. doi: 10.1007/s00371-019-01722-6
|
[12] |
M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall, “HIVE-COTE 2.0: A new meta ensemble for time series classification,” Machine Learning, vol. 110, no. 11–12, pp. 3211–3243, 2021. doi: 10.1007/s10994-021-06057-9
|
[13] |
H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J. Weber, G. I. Webb, L. Idoumghar, P.-A. Muller, and F. Petitjean, “Inceptiontime: Finding alexnet for time series classification,” Data Mining and Knowledge Discovery, vol. 34, no. 6, pp. 1936–1962, 2020. doi: 10.1007/s10618-020-00710-y
|
[14] |
Z. Yuan, Y. Wang, X. Ban, C. Ning, H.-N. Dai, and H. Wang, “Autonomous-jump-ODENet: Identifying continuous-time jump systems for cooling-system prediction,” IEEE Trans. Industrial Inform., vol. 19, no. 7, pp. 7894–7904, 2023. doi: 10.1109/TII.2022.3207835
|
[15] |
M. Perslev, S. Darkner, L. Kempfner, M. Nikolic, P. J. Jennum, and C. IGEL, “U-sleep: Resilient high-frequency sleep staging,” NPJ Digital Medicine, vol. 4, no. 1, p. 72, 2021. doi: 10.1038/s41746-021-00440-5
|
[16] |
Z. Ebrahimi, M. Loni, M. Daneshtalab, and A. Gharehbaghi, “A review on deep learning methods for ECG arrhythmia classification,” Expert Systems Applications: X, vol. 7, p. 100033, 2020. doi: 10.1016/j.eswax.2020.100033
|
[17] |
P. Liu, X. Sun, Y. Han, Z. He, W. Zhang, and C. Wu, “Arrhythmia classification of LSTM autoencoder based on time series anomaly detection,” Biomedical Signal Processing and Control, vol. 71, p. 103228, 2022. doi: 10.1016/j.bspc.2021.103228
|
[18] |
S. Gaugel and M. Reichert, “PrecTime: A deep learning architecture for precise time series segmentation in industrial manufacturing operations,” Engineering Applications of Artificial Intelligence, vol. 122, p. 106078, 2023. doi: 10.1016/j.engappai.2023.106078
|
[19] |
Z. Wang, L. Wang, C. Huang, Z. Zhang, and X. Luo, “Soil-moisturesensor-based automated soil water content cycle classification with a hybrid symbolic aggregate approximation algorithm,” IEEE Internet of Things J., vol. 8, no. 18, pp. 14003–14012, 2021. doi: 10.1109/JIOT.2021.3068379
|
[20] |
Y. Wu, H.-N. Dai, and H. Tang, “Graph neural networks for anomaly detection in industrial internet of things,” IEEE Internet of Things J., vol. 9, no. 12, pp. 9214–9231, 2022. doi: 10.1109/JIOT.2021.3094295
|
[21] |
S. Lu and S. Huang, “Segmentation of multivariate industrial time series data based on dynamic latent variable predictability,” IEEE Access, vol. 8, pp. 112092–112103, 2020. doi: 10.1109/ACCESS.2020.3002257
|
[22] |
W. Wang, Q. Lin, D. Cai, and M. Li, “Similarity measurement of segment-level speaker embeddings in speaker diarization,” IEEE/ACM Trans. Audio, Speech, and Language Processing, vol. 30, pp. 2645–2658, 2022. doi: 10.1109/TASLP.2022.3196178
|
[23] |
D. M. Sime, G. Wang, Z. Zeng, and B. Peng, “Deep learning-based automated steel surface defect segmentation: A comparative experimental study,” Multimedia Tools and Applications, vol. 83, no. 1, pp. 2995–3018, 2024. doi: 10.1007/s11042-023-15307-y
|
[24] |
S. Li, Y. A. Farha, Y. Liu, M.-M. Cheng, and J. Gall, “MS-TCN++: Multistage temporal convolutional network for action segmentation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 45, no. 6, pp. 6647–6658, 2020.
|
[25] |
S. Xie, Y. Xie, and T. Huang, “TSTFNN: Performance enhancement for fuzzy neural network in performance monitoring of industrial flotation processes,” IEEE Trans. Industrial Informatics, vol. 20, no. 3, pp. 4919–4929, 2024. doi: 10.1109/TII.2023.3330342
|
[26] |
N. Tatbul, T. J. Lee, S. Zdonik, M. Alam, and J. Gottschlich, “Precision and recall for time series,” Advances in Neural Inform. Proce. Systems, vol. 31, pp. 1920–1930, 2018.
|
[27] |
T.-D. Bui, V.-D. Pham, and T.-L. Cung, “Multilayer perceptron neural network and Eddy current technique for estimation of the crack depth on massive metal structures,” J. Military Science and Technology, vol. 77, pp. 3–12, 2022.
|
[28] |
M. Middlehurst, P. Schäfer, and A. Bagnall, “Bake off redux: A review and experimental evaluation of recent time series classification algorithms,” Data Mining and Knowledge Discovery, vol. 38, pp. 1958–2031, 2024.
|
[29] |
X. Ke, X. Miao, and W. Guo, “U-transformer-based multi-levels refinement for weakly supervised action segmentation,” Pattern Recognition, vol. 149, p. 110199, 2024. doi: 10.1016/j.patcog.2023.110199
|
[30] |
M. Perslev, M. Jensen, S. Darkner, P. J. r. Jennum, and C. Igel, “U-time: A fully convolutional network for time series segmentation applied to sleep saging,” Advances in Neural Information Proce. Systems, vol. 32, pp. 4415–4426, 2019.
|