IEEE/CAA Journal of Automatica Sinica
Citation: | Kai Chen, Junguo Lu and Chuang Li, "The Ellipsoidal Invariant Set of Fractional Order Systems Subject to Actuator Saturation: The Convex Combination Form," IEEE/CAA J. of Autom. Sinica, vol. 3, no. 3, pp. 311-319, 2016. |
[1] |
Sabatier J, Agrawal O P, Machado J A T. Advances in Fractional Calculus. Netherlands: Springer, 2007.
|
[2] |
Mainardi F. Fractional calculus. Fractals and Fractional Calculus in Continuum Mechanics. Vienna: Springer, 1997. 291-348
|
[3] |
Meral F C, Royston T J, Magin R. Fractional calculus in viscoelasticity: an experimental study. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(4): 939-945
|
[4] |
Baleanu D, Golmankhaneh A K, Golmankhaneh A K, Baleanu M C. Fractional electromagnetic equations using fractional forms. International Journal of Theoretical Physics, 2009, 48(11): 3114-3123
|
[5] |
Luo Y, Chen Y Q. Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica, 2009, 45(10): 2446-2450
|
[6] |
Luo Y, Chen Y Q. Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica, 2012, 48(9): 2159-2167
|
[7] |
Kheirizad I, Jalali A A, Khandani K. Stabilization of all-pole unstable delay systems by fractional-order [PI] and [PD] controllers. Transactions of the Institute of Measurement and Control, 2013, 35(3): 257-266
|
[8] |
Hu T S, Lin Z L, Chen B M. An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica, 2002, 38(2): 351-359
|
[9] |
Zhang L X, Boukas E K. Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities. Automatica, 2009, 45(2): 463-468
|
[10] |
Ma S, Zhang C, Zhu S. Robust stability for discrete-time uncertain singular Markov jump systems with actuator saturation. IET Control Theory & Applications, 2011, 5(2): 255-262
|
[11] |
Chen Y Q, Moore K L. On Dα-type iterative learning control. In: Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, FL: IEEE, 2001. 4451-4456
|
[12] |
Li Y, Chen Y, Ahn H S. Fractional order iterative learning control. In: Proceedings of the ICCAS-SICE 2009. Fukuoka, Japan: IEEE, 2009. 3106-3110
|
[13] |
Li Y, Chen Y Q, Ahn H S. Fractional-order iterative learning control for fractional-order linear systems. Asian Journal of Control, 2011, 13(1): 54-63
|
[14] |
Lu J G, Chen Y Q. Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties. Fractional Calculus and Applied Analysis, 2013, 16(1): 142-157
|
[15] |
Li C, Wang J C. Robust stability and stabilization of fractional order interval systems with coupling relationships: the 0 < α < 1 case. Journal of the Franklin Institute, 2012, 349(7): 2406-2419
|
[16] |
Lu J G, Ma Y D, Chen W D. Maximal perturbation bounds for robust stabilizability of fractional-order systems with norm bounded perturbations. Journal of the Franklin Institute, 2013, 350(10): 3365-3383
|
[17] |
Liao Z, Peng C, Li W, Wang Y. Robust stability analysis for a class of fractional order systems with uncertain parameters. Journal of the Franklin Institute, 2011, 348(6): 1101-1113
|
[18] |
Jiao Z, Zhong Y S. Robust stability for fractional-order systems with structured and unstructured uncertainties. Computers & Mathematics with Applications, 2012, 64(10): 3258-3266
|
[19] |
Li Y, Chen Y Q, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45(8): 1965-1969
|
[20] |
Yu J M, Hu H, Zhou S B, Lin X R. Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems. Automatica, 2013, 49(6): 1798-1803
|
[21] |
Li C, Wang J, Lu J. Observer-based robust stabilisation of a class of nonlinear fractional-order uncertain systems: an linear matrix inequalitie approach. IET Control Theory & Applications, 2012, 6(18): 2757-2764
|
[22] |
Lim Y H, Oh K K, Ahn H S. Stability and stabilization of fractionalorder linear systems subject to input saturation. IEEE Transactions on Automatic Control, 2013, 58(4): 1062-1067
|
[23] |
Hu T S, Lin Z L. Composite quadratic Lyapunov functions for constrained control systems. IEEE Transactions on Automatic Control, 2003, 48(3): 440-450
|
[24] |
Duarte-Mermoud M A, Aguila-Camacho N, Gallegos J A, Castro-Linares R. Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1-3): 650-659
|
[25] |
Hu T S, Lin Z L. Control Systems with Actuator Saturation: Analysis and Design. Basel: BirkhÄauser, 2001.
|
[26] |
Li C, Lu J G. On the ellipsoidal invariant set of fractional order systems subject to actuator saturation. In: Proceedings of the 34th Chinese Control Conference. Hangzhou, China: IEEE, 2015. 800-805
|
[27] |
Li C, Wang J C, Lu J G, Ge Y. Observer-based stabilisation of a class of fractional order non-linear systems for 0 < α < 2 case. IET Control Theory & Applications, 2014, 8(13): 1238-1246
|