Citation: | C. Gu, X. Wang, K. Li, X. Yin, S. Li, and L. Wang, “Enhanced tube-based event-triggered stochastic model predictive control with additive uncertainties,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 0, pp. 1–10, Oct. 2024. |
[1] |
T. Li, X. Sun, G. Lei, Y. Guo, Z. Yang, and J. Zhu, “Finite-control-set model predictive control of permanent magnet synchronous motor drive systems—An overview,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2087–2105, Sept. 2022. doi: 10.1109/JAS.2022.105851
|
[2] |
L. D'Alfonso, F. Giannini, G. Franzè, G. Fedele, F. Pupo, and G. Fortino, “Autonomous vehicle platoons in urban road networks: A joint distributed reinforcement learning and model predictive control approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 141–156, Jan. 2024. doi: 10.1109/JAS.2023.123705
|
[3] |
T. Bai, S. Li, and Y. Zheng, “Distributed model predictive control for networked plant-wide systems with neighborhood cooperation,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 108–117, Jan. 2019. doi: 10.1109/JAS.2019.1911333
|
[4] |
H. Wei and Y. Shi, “Mpc-based motion planning and control enables smarter and safer autonomous marine vehicles: perspectives and a tutorial survey,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 8–24, Jan. 2022.
|
[5] |
M. Farina, L. Giulioni, and R. Scattolini, “Stochastic linear model predictive control with chance constraints—A review,” J. Process Control, vol. 44, pp. 56–67, Aug. 2016.
|
[6] |
X. Ping, J. Hu, T. Lin, B. Ding, P. Wang, and Z. Li, “A survey of output feedback robust MPC for linear parameter varying systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1717–1751, Oct. 2022. doi: 10.1109/JAS.2022.105605
|
[7] |
F. Li, H. Li, and Y. He, “Stochastic model predictive control for linear systems with unbounded additive uncertainties,” J. Frankl. Inst.-Eng. Appl. Math., vol. 359, no. 7, pp. 3024–3045, May 2022. doi: 10.1016/j.jfranklin.2022.02.004
|
[8] |
A. Mesbah, “Stochastic model predictive control: An overview and perspectives for future research,” IEEE Control Syst. Mag., vol. 36, no. 6, pp. 30–44, Dec. 2016. doi: 10.1109/MCS.2016.2602087
|
[9] |
M. C. Campi and S. Garatti, “A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality,” J. Optim. Theory Appl., vol. 148, no. 2, pp. 257–280, Feb. 2011. doi: 10.1007/s10957-010-9754-6
|
[10] |
M. Lorenzen, F. Dabbene, R, Tempo, and F. Allgöwer, “Constraint-tightening and dtability in dtochastic model predictive control,” IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3165–3177, Jul. 2017. doi: 10.1109/TAC.2016.2625048
|
[11] |
C. Shang and F. You, “A data-driven robust optimization approach to scenario-based stochastic model predictive control,” J. Process Control, vol. 75, pp. 24–39, Mar. 2019. doi: 10.1016/j.jprocont.2018.12.013
|
[12] |
J. A. Paulson, E. A. Buehler, R. D. Braatz, and A. Mesbah, “Stochastic model predictive control with joint chance constraints,” Int. J. Control, vol. 93, no. 1, pp. 126–139, Oct. 2020. doi: 10.1080/00207179.2017.1323351
|
[13] |
S. Yan, P. Goulart, and M. Cannon, “Stochastic MPC with dynamic feedback gain selection and discounted probabilistic constraints,” IEEE Trans. Autom. Control, vol. 67, no. 11, pp. 5885–5899, Nov. 2022. doi: 10.1109/TAC.2021.3128466
|
[14] |
L. Hewing and M. N. Zeilinger, “Scenario-based probabilistic reachable sets for recursively feasible stochastic model predictive control,” IEEE Control Syst. Lett., vol. 4, no. 2, pp. 450–455, Apr. 2020. doi: 10.1109/LCSYS.2019.2949194
|
[15] |
F. Micheli and J. Lygeros, “Scenario-based stochastic MPC for systems with uncertain dynamics,” in Proc. European Control Conf., London, UK, 2022, pp. 833–838.
|
[16] |
T. Bai, S. Li, and Y. Zou, “Distributed MPC for reconfigurable architecture systems via alternating direction method of multipliers,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1336–1344, Jul. 2021. doi: 10.1109/JAS.2020.1003195
|
[17] |
Mi X, Zou Y, Li S, et al, “Self-triggered DMPC design for cooperative multiagent systems,” IEEE Trans. Ind. Electron., vol. 6, no. 1, pp. 512–520, Feb. 2019.
|
[18] |
J. Yin, D. Shen, X. Du, and L. Li, “Distributed stochastic model predictive control with taguchi’s robustness for vehicle platooning,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9, pp. 15967–15979, Sept. 2022. doi: 10.1109/TITS.2022.3146715
|
[19] |
M. Cannon, B. Kouvaritakis, S. V. Rakovic, and Q. F. Cheng, “Stochastic tubes in model predictive control with probabilistic constraints,” IEEE Trans. Autom. Control, vol. 56, no. 1, pp. 194–200, Jan. 2011. doi: 10.1109/TAC.2010.2086553
|
[20] |
Y. Zou, X. Su, S. Li, Y. Niu, and D. Li, “Event-triggered distributed predictive control for asynchronous coordination of multi-agent systems,” Automatica, vol. 99, pp. 92–98, Jan. 2019. doi: 10.1016/j.automatica.2018.10.019
|
[21] |
X. Mi and S. Li, “Event-triggered MPC design for distributed systems with network communications,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 240–250, Jan. 2018. doi: 10.1109/JAS.2016.7510154
|
[22] |
Z. Shao, Y. Wang, Z. Li, and Y. Song, “Dynamic constraint-driven event-triggered control of strict-feedback systems without max/min values on irregular constraints,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 569–580, Mar. 2024. doi: 10.1109/JAS.2023.123804
|
[23] |
F. Li and Y. Liu, “Event-triggered stabilization for continuous-time stochastic systems,” IEEE Trans. Autom. Control, vol. 65, no. 10, pp. 4031–4046, Oct. 2020. doi: 10.1109/TAC.2019.2953081
|
[24] |
H. Li and Y. Shi, “Event-triggered robust model predictive control of continuous-time nonlinear systems,” Automatica, vol. 50, no. 5, pp. 1507–1513, May 2014. doi: 10.1016/j.automatica.2014.03.015
|
[25] |
Q. Sun, J. Chen, and Y. Shi, “Integral-type event-triggered model predictive control of nonlinear systems with additive disturbance,” IEEE T. Cybern., vol. 51, no. 12, pp. 5921–5929, Dec. 2021. doi: 10.1109/TCYB.2019.2963141
|
[26] |
M. Wang, J. Sun, and J. Chen, “Stabilization of perturbed continuous-time systems using event-triggered model predictive control,” IEEE T. Cybern., vol. 52, no. 5, pp. 4039–4051, May 2022. doi: 10.1109/TCYB.2020.3011177
|
[27] |
H. Wang, J. Wang, H. Xu, and S. Zhao, “A self-triggered stochastic model predictive control for uncertain networked control system,” Int. J. Control, vol. 96, no. 8, pp. 2113–2123, Aug. 2023. doi: 10.1080/00207179.2022.2084163
|
[28] |
S. Subramanian, M. Aboelnour, and S. Engell, “Robust tube-enhanced multi-stage output feedback MPC for linear systems with additive and parametric uncertainties,” in Proc. 18th European Control Conf., Naples, Italy, 2019, pp. 331–336.
|
[29] |
E. Kofman, J. A. De Doná, and M. M. Seron, “Probabilistic set invariance and ultimate boundedness,” Automatica, vol. 48, no. 10, pp. 2670–2676, Oct. 2012. doi: 10.1016/j.automatica.2012.06.074
|
[30] |
L. Hewing, K. P. Wabersich, and M. N. Zeilinger, “Recursively feasible stochastic model predictive control using indirect feedback,” Automatica, vol. 119, Sept. 2020.
|
[31] |
S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, “Invariant approximations of the minimal robust positively invariant set,” IEEE Trans. Autom. Control, vol. 50, no. 3, pp. 406–410, Mar. 2005. doi: 10.1109/TAC.2005.843854
|
[32] |
M. Ono, “Joint chance-constrained model predictive control with probabilistic resolvability,” in Proc. American Control Conf., Montreal, Canada, 2012, pp. 435–441.
|
[33] |
T. Hashimoto, “Probabilistic constrained model predictive control for linear discrete-time systems with additive stochastic disturbances,” in Proc. 52nd IEEE Conf. Decis. Control, Florence, Italy, 2013, pp. 6434–6439.
|
[34] |
B. Kouvaritakis and M. Cannon, Model Predictive Control: Classical, Robust and Stochastic. Cham, Switzerland: Springer, 2016.
|
[35] |
F. Lauro, L. Longobardi, and S. Panzieri, “An adaptive distributed predictive control strategy for temperature regulation in a multizone office building,” in Proc. IEEE Int. Workshop Intell. Energy Syst., San Diego, USA, 2014, pp. 32–37.
|