IEEE/CAA Journal of Automatica Sinica
Citation: | Li Liu, Aolei Yang, Wenju Zhou, Xiaofeng Zhang, Minrui Fei and Xiaowei Tu, "Robust Dataset Classification Approach Based on Neighbor Searching and Kernel Fuzzy C-Means," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 3, pp. 235-247, 2015. |
[1] |
Dunn J. A graph theoretic analysis of pattern classification via Tamura's fuzzy relation. IEEE Transactions on Systems, Man, and Cybernetics, 1974, SMC-4(3):310-313
|
[2] |
Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Springer, 1981.
|
[3] |
Wu K L, Yang M S. Alternative c-means clustering algorithms. Pattern Recognition, 2002, 35(10):2267-2278
|
[4] |
Ahmed M N, Yamany S M, Mohamed N, Farag A A, Moriarty T. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging, 2002, 21(3):193-199
|
[5] |
Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2004, 34(4):1907-1916
|
[6] |
Szilagyi L, Benyo Z, Szilagyi S M, Adam H S. MR brain image segmentation using an enhanced fuzzy c-means algorithm. In:Proceedings of the 25th Annual International Conference on Engineering in Medicine and Biology Society. Cancun, Mexico:IEEE, 2003. 724-726
|
[7] |
Li C F, Liu L Z, Jiang W L. Objective function of semi-supervised fuzzy c-means clustering algorithm. In:Proceedings of the 6th IEEE International Conference on Industrial Informatics. Daejeon, Korea:IEEE, 2008. 737-742
|
[8] |
Huang S B, Cheng Y, Wan Q S, Liu G F, Shen L S. A hierarchical multi-relational clustering algorithm based on IDEF1x. Acta Automatica Sinica, 2014, 40(8):1740-1753(in Chinese)
|
[9] |
Wang L, Gao X W, Wang W, Wang Q. Order production scheduling method based on subspace clustering mixed model and time-section ant colony algorithm. Acta Automatica Sinica, 2014, 40(9):1991-1997(in Chinese)
|
[10] |
Ferreira M R, De Carvalho F D A T. Kernel fuzzy c-means with automatic variable weighting. Fuzzy Sets and Systems, 2014, 237:1-46
|
[11] |
Krinidis S, Chatzis V. A robust fuzzy local information c-means clustering algorithm. IEEE Transactions on Image Processing, 2010, 19(5):1328-1337
|
[12] |
Krinidis S, Krinidis M. Generalised fuzzy local information c-means clustering algorithm. Electronics Letters, 2012, 48(23):1468-1470
|
[13] |
Gong M G, Liang Y, Shi J, Ma W P, Ma J J. Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Transactions on Image Processing, 2013, 22(2):573-584
|
[14] |
Chiranjeevi P, Sengupta S. Detection of moving objects using multichannel kernel fuzzy correlogram based background subtraction. IEEE Transactions on Cybernetics, 2014, 44(6):870-881
|
[15] |
Alipour S, Shanbehzadeh J. Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method. Machine Vision and Applications, 2014, 25(6):1469-1488
|
[16] |
Lu C H, Xiao S Q, Gu X F. Improving fuzzy c-means clustering algorithm based on a density-induced distance measure. The Journal of Engineering, 2014, 1(1):1-3
|
[17] |
Qiu C Y, Xiao J, Han L, Naveed Iqbal M. Enhanced interval type-2 fuzzy c-means algorithm with improved initial center. Pattern Recognition Letters, 2014, 38:86-92
|
[18] |
Candés E J, Li X D, Ma Y, Wright J. Robust principal component analysis. Journal of the ACM (JACM), 2011, 58(3):Article No. 11
|
[19] |
Yang M S, Lai C Y, Lin C Y. A robust EM clustering algorithm for Gaussian mixture models. Pattern Recognition, 2012, 45(11):3950-3961
|
[20] |
Elhamifar E, Vidal R. Robust classification using structured sparse representation. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2011. 1873-1879
|
[21] |
Xie X M, Wang C M, Zhang A J, Meng X F. A robust level set method based on local statistical information for noisy image segmentation. Optik-International Journal for Light and Electron Optics, 2014, 125(9):2199-2204
|
[22] |
Filippone M, Camastra F, Masulli F, Rovetta S. A survey of kernel and spectral methods for clustering. Pattern Recognition, 2008, 41(1):176-190
|
[23] |
Zhang J P, Chen F C, Li S M, Liu L X. Data stream clustering algorithm based on density and affinity propagation techniques. Acta Automatica Sinica, 2014, 40(2):277-288(in Chinese)
|
[24] |
Kantardzic M. Data Mining:Concepts, Models, Methods, and Algorithms. Second Edition. New York:John Wiley & Sons, 2011. 249-259
|
[25] |
Anderson M J, Ellingsen K E, McArdle B H. Multivariate dispersion as a measure of beta diversity. Ecology Letters, 2006, 9(6):683-693
|
[26] |
Anderson M J, Santana-Garcon J. Measures of precision for dissimilarity-based multivariate analysis of ecological communities. Ecology Letters, 2015, 18(1):66-73
|
[27] |
Cormen T H, Leiserson C E, Rivest R L, Stein C. Introduction to Algorithms. Cambridge:MIT Press, 2001. 1-7
|
[28] |
Qian J B, Dong Y S. A clustering algorithm based on broad first searching neighbors. Journal of Southeast University (Natural Science Edition), 2004, 34(1):109-112(in Chinese)
|
[29] |
Bezdek J C, Hathaway R J, Sabin M J, Tucker W T. Convergence theory for fuzzy c-means:counterexamples and repairs. IEEE Transactions on Systems, Man, and Cybernetics, 1987, 17(5):873-877
|
[30] |
Shahriari H, Ahmadi O. Robust estimation of the mean vector for high-dimensional data set using robust clustering. Journal of Applied Statistics, 2015, 42(6):1183-1205
|
[31] |
Kinoshita N, Endo Y. EM-based clustering algorithm for uncertain data. Knowledge and Systems Engineering, 2014, 245:69-81
|
[32] |
Gao J, Wang S T. Fuzzy clustering algorithm with ranking features and identifying noise simultaneously. Acta Automatica Sinica, 2009, 35(2):145-153(in Chinese)
|