A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
H. Yao, L. Shu, Y. Yang, M. Martínez-García, and W. Lin, “SILIC: Intelligent on/off control for networked solar insecticidal lamps,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–15, Jan. 2025.
Citation: H. Yao, L. Shu, Y. Yang, M. Martínez-García, and W. Lin, “SILIC: Intelligent on/off control for networked solar insecticidal lamps,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–15, Jan. 2025.

SILIC: Intelligent On/Off Control for Networked Solar Insecticidal Lamps

Funds:  This work was supported in part by the National Natural Science Foundation of China (62072248)
More Information
  • The solar insecticidal lamp (SIL) is an innovative green control device. Nevertheless, a major challenge is often encountered when carrying out insecticidal work is low energy utilization efficiency. The substantial energy consumption required to turn on the SIL, coupled with the extension of insecticidal working time during the low pest activity periods, can result in low energy efficiency. Especially when the energy storage level is below 50%, the inefficient use of energy significantly reduces the effectiveness of pest control. Consequently, an ineffective on/off scheme for these lamps may lead to suboptimal energy utilization. In this paper, we present the solar insecticidal lamp intelligent energy management scheme (SIL-IEMS) to address the challenge of inefficient energy utilization in the solar insecticidal lamp internet of things (SIL-IoT). SIL-IEMS primarily utilizes genetic algorithm (GA) and greedy algorithms to optimize insecticidal working time by considering constraints such as residual energy and the number of trap pests. Comparing SIL-IEMS to the traditional remote switching method (TRSM) and the solar insecticidal lamp genetic algorithm (SILGA), our simulation results showcase its superior energy efficiency and pest control effectiveness. Particularly noteworthy is the SILIEMS’s 17.6% increase in insecticidal efficiency compared to TRSM and 6% improvement over SILGA when the SIL begins with a remaining energy level of 15%.

     

  • loading
  • [1]
    H. Yao, L. Shu, F. Yang, Y. Jin, and Y. Yang, “The phototactic rhythm of pests for the solar insecticidal lamp: A review,” Front. Plant Sci., vol. 13, p. 1018711, Jan. 2023. doi: 10.3389/fpls.2022.1018711
    [2]
    K. Wang, Q. Gao, L. Li, “Current development status of agricultural insect-pest light trap in China,” Insect Research in Central China, vol. 16, no. 00, pp. 116–125, Dec. 2020.
    [3]
    Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Letter of response to the proposal No. 0176 (No. 016 of agriculture, forestry and water conservancy) of the Fifth Session of the 12th National Committee of the Chinese People’s Political Consultative Conference. Sept. 5, 2017. [Online]. Available: http://www.moa.gov.cn/govpublic/ZZYGLS/201709/t20170905_5804448.htm
    [4]
    J.-W. Zhao, Y.-X. He, and Q.-Y. Weng, “Application and research of insect light traps in China,” Entomol. J. East China, vol. 17, no. 1, pp. 76–80, Jan.–Mar. 2008.
    [5]
    J. H. Park and H. S. Lee, “Phototactic behavioral response of agricultural insects and stored-product insects to light-emitting diodes (LEDs),” Appl. Biol. Chem., vol. 60, no. 2, pp. 137–144, Mar. 2017.
    [6]
    K. Li, L. Shu, K. Huang, Y. Sun, F. Yang, Y. Zhang, Z. Huo, Y. Wang, X. Wang, Q. Lu, and Y. Wei, “Research and prospect of solar insecticidal lamps internet of things,” Smart Agric., vol. 1, no. 3, pp. 13–28, Sept. 2019.
    [7]
    F. Yang, L. Shu, Y. Yang, G. Han, S. Pearson, and K. Li, “Optimal deployment of solar insecticidal lamps over constrained locations in mixed-crop farmlands,” IEEE Internet Things J., vol. 8, no. 16, pp. 13095–13114, Aug. 2021. doi: 10.1109/JIOT.2021.3064043
    [8]
    H. Yao, L. Shu, W. Lin, K. Huang, M. Martínez-García, and X. Zou, “Pests phototactic rhythm driven solar insecticidal lamp device evolution: Mathematical model preliminary result and future directions,” IEEE Open J. Ind. Electron. Soc., vol. 5, pp. 236–250, Mar. 2024. doi: 10.1109/OJIES.2024.3372577
    [9]
    R. Venkatesan, G. J. W. Kathrine, and K. Ramalakshmi, “Internet of things based pest management using natural pesticides for small scale organic gardens,” J. Comput. Theor. Nanosci., vol. 15, no. 9–10, pp. 2742–2747, Sept. 2018.
    [10]
    N. Ahmed, D. De, and I. Hussain, “Internet of things (IoT) for smart precision agriculture and farming in rural areas,” IEEE Internet Things J., vol. 5, no. 6, pp. 4890–4899, Nov. 2018. doi: 10.1109/JIOT.2018.2879579
    [11]
    S. S. A. Emira, K. Y. Youssef, and M. Abouelatta, “Adaptive power system for IoT-based smart agriculture applications,” in Proc. 15th Int. Computer Engineering Conf., Cairo, Egypt, 2019, pp. 126–131.
    [12]
    O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, and X. Wang, “Internet of things for the future of smart agriculture: A comprehensive survey of emerging technologies,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 718–752, Apr. 2021. doi: 10.1109/JAS.2021.1003925
    [13]
    X.-G. Zhang, Y.-F. Jia, Y. Wen, Y.-F. Zhang, G.-J. and Wan, F.-J. Chen, “Behavioral rhythms of three lepidopteran pests; Mythimna separata, Agrotis ypsilon and Helicoverpa armigera,” Chin. J. Appl. Entomol., vol. 54, no. 2, pp. 190–197, Mar. 2017.
    [14]
    Z. Zhang, Z. Leng, C. Zhu, Z. Zhu, and Y. Su, “Design and implementation of remote state monitoring and control system for internet of things insecticidal lamp,” Comput. Appl. Softw., vol. 38, no. 5, pp. 37–41, May 2021.
    [15]
    T. Logenthiran, D. Srinivasan, and T. Z. Shun, “Demand side management in smart grid using heuristic optimization,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1244–1252, Sept. 2012.
    [16]
    T. Molla, B. Khan, B. Moges, H. H. Alhelou, R. Zamani, and P. Siano, “Integrated optimization of smart home appliances with cost-effective energy management system,” CSEE J. Power Energy Syst., vol. 5, no. 2, pp. 249–258, Jun. 2019.
    [17]
    R. Naja, A. Soni, and C. Carletti, “Electric vehicles energy management for vehicle-to-grid 6g-based smart grid networks,” J. Sens. Actuator Netw., vol. 12, p. 6, Nov. 2023. doi: 10.3390/jsan12010006
    [18]
    D. Liu, Y. Xu, Q. Wei, and X. Liu, “Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 36–46, Jan. 2018. doi: 10.1109/JAS.2017.7510739
    [19]
    G. Seo, S. Yoon, M. Kim, C. Mun, and E. Hwang, “Deep reinforcement learning-based smart joint control scheme for on/off pumping systems in wastewater treatment plants,” IEEE Access, vol. 9, pp. 95360–95371, Jul. 2021.
    [20]
    A. Kasis, S. Timotheou, and M. Polycarpou, “Optimal secondary frequency regulation with on-off loads in power networks,” IEEE Trans. Control Syst. Technol., vol. 30, no. 6, pp. 2490–2505, Nov. 2022. doi: 10.1109/TCST.2022.3154897
    [21]
    G. B. Cáceres, A. Ferramosca, P. M. Gata, and M. P. Martín, “Model predictive control structures for periodic ON-OFF irrigation,” IEEE Access, vol. 11, pp. 51985–51996, Jun. 2023. doi: 10.1109/ACCESS.2023.3277618
    [22]
    C. Yu, S. Shen, K. Zhang, H. Zhao, and Y. Shi, “Energy-aware device scheduling for joint federated learning in edge-assisted internet of agriculture things,” in Proc. IEEE Wireless Communications and Networking Conf., Austin, USA, 2022, pp. 1140–1145.
    [23]
    Henan Yunfei Science and Technology Co., Ltd. [Online]. Available: https://www.hnyfkj.com.cn/
    [24]
    YF-W-L40 Smart IoTs insecticidal lamp. [Online]. Available: https://www.hnyfkj.com.cn/newshow.asp?Cid=33&Pid=3822
    [25]
    Zhejiang Top Cloud-Agricultural Technology Co., Ltd. [Online]. Available: http://www.tpwlw.com/
    [26]
    TPSC7-1-DC Networked insecticidal lamp. [Online]. Available: http://www.tpwlw.com/product/cp_84.html
    [27]
    Zhejiang Longhao Agricultural Science Technology Co., Ltd. [Online]. Available: https://www.dwdds.com/
    [28]
    IoTs solar insecticidal lamp. [Online]. Available: https://www.dwdds.com/products_detail/c-_detailId%3D1192766591399354368.html
    [29]
    Chengdu Beang Technology Co., Ltd. [Online]. Available: https://www.cdbeyond.com/
    [30]
    BA-T/YCI remote intelligent cloud insecticide lamp. [Online]. Available: https://www.cdbeyond.com/a/65.html
    [31]
    Henan Sailan Instrument and Equipment Manufacturing Co., Ltd. [Online]. Available: http://www.slyqa.com/
    [32]
    Smart IoTs solar insecticidal lamp. [Online]. Available: http://www.slyqa.com/a/tynscd/3006.html
    [33]
    Changzhou Jinhe New Energy Technology Co., Ltd. [Online]. Available: http://www.jinhexny.com/
    [34]
    Networked Insecticidal Lamp. [Online]. Available: http://www.jinhexny.com/Products_xq/1964371.html
    [35]
    S. Lin, “The research and the manufacture of solar LED insecticidal light,” Ph.D. dissertation, Guizho University, Guiyang, China, 2015.
    [36]
    M. Datta, T. Senjyu, A. Yona, T. Funabashi, and C.-H. Kim, “A coordinated control method for leveling PV output power fluctuations of PV-diesel hybrid systems connected to isolated power utility,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 153–162, Mar. 2009. doi: 10.1109/TEC.2008.2008870
    [37]
    S. Shao, Q. Zhang, S. Guo, L. Sun, X. Qiu, and L. Meng, “Intelligent farm meets edge computing: Energy-efficient solar insecticidal lamp management,” IEEE Syst. J., vol. 16, no. 3, pp. 3668–3678, Sept. 2022.
    [38]
    G. Gu, H. Ge, X. Cheng, J. Han, J. Yin, Y. Shen, H. Ji, and J. Cui, “Study on and application of the rhythm of several niht-active insects to light trap in the night,” J. Hubei Agric. Coll., vol. 24, no. 3, pp. 174–177, Jan. 2004.
    [39]
    H. Yang, “Study on light-trapped behavior of Sogatellla furcifera (Horváth) and Nilaparvata lugens (Stæal),” Ph.D. dissertation, Nanjing Agricultural University, Nanjing, China, 2014.
    [40]
    Z. Zhang, “Monitoring and population dynamics analysis of important migratory pest insects in northern China,” Ph.D. dissertation, Chinese Academy of Agricultural Sciences, Beijing, China, 2013.
    [41]
    N. Zhu and I. O’Connor, “iMASKO: A genetic algorithm based optimization framework for wireless sensor networks,” J. Sens. Actuator Netw., vol. 2, no. 4, pp. 675–699, Oct. 2013. doi: 10.3390/jsan2040675
    [42]
    H. Hao, M. Wang, and H. Wang, “Optimization of emergency supply and distribution of fresh agricultural products under public health emergencies,” IEEE Access, vol. 12, pp. 28636–28653, Jan. 2024. doi: 10.1109/ACCESS.2024.3368917

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (34) PDF downloads(5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return