Citation: | X. Shi and C. Sun, “Penalty function-based distributed primal-dual algorithm for nonconvex optimization problem,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–9, Feb. 2025. |
[1] |
J. Huang, J. Wan, B. Lv, Q. Ye, and Y. Chen, “Joint computation offloading and resource allocation for edge-cloud collaboration in internet of vehicles via deep reinforcement learning,” IEEE Syst. J., vol. 17, no. 2, pp. 2500–2511, Jun. 2023. doi: 10.1109/JSYST.2023.3249217
|
[2] |
P. K. Saha, N. Chakraborty, A. Mondal, and S. Mondal, “Intelligent real-time utilization of hybrid energy resources for cost optimization in smart microgrids,” IEEE Syst. J., vol. 18, no. 1, pp. 186–197, Mar. 2024. doi: 10.1109/JSYST.2024.3352617
|
[3] |
A. N. Sadigh, H. Zayyani, and M. Korki, “A robust proportionate graph recursive least squares algorithm for adaptive graph signal recovery,” IEEE Trans. Circuits Syst. Ⅱ: Express Briefs, vol. 71, no. 7, pp. 3608–3612, Jul. 2024. doi: 10.1109/TCSII.2024.3364090
|
[4] |
Z. Chen, J. Wang, and Q.-L. Han, “A collaborative neurodynamic optimization approach to distributed chiller loading,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 8, pp. 10950–10960, Aug. 2024.
|
[5] |
Z. Hu, W. Gong, W. Pedrycz, and Y. Li, “Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization,” Swarm EComput., vol. 83, p. 101387, Dec. 2023. doi: 10.1016/j.swevo.2023.101387
|
[6] |
H.-C. Lu, H.-Y. Tseng, and S.-W. Lin, “Double-track particle swarm optimizer for nonlinear constrained optimization problems,” Inf. Sci., vol. 622, pp. 587–628, Apr. 2023. doi: 10.1016/j.ins.2022.11.164
|
[7] |
K. Zhang, X. Zhao, G. Chen, M. Zhao, J. Wang, C. Yao, H. Sun, J. Yao, W. Wang, and G. Zhang, “A double-model differential evolution for constrained waterflooding production optimization,” J. Pet. Sci. Eng., vol. 207, p. 109059, Dec. 2021. doi: 10.1016/j.petrol.2021.109059
|
[8] |
C. Liu, S. Ge, and Y. Zhang, “Identifying the cardinality-constrained critical nodes with a hybrid evolutionary algorithm,” Inf. Sci., vol. 642, p. 119140, Sept. 2023.
|
[9] |
M. Okulewicz, M. Zaborski, and J. Mańdziuk, “Self-adapting particle swarm optimization for continuous black box optimization,” Appl. Soft Comput., vol. 131, p. 109722, Dec. 2022. doi: 10.1016/j.asoc.2022.109722
|
[10] |
Q. Lü, K. Zhang, S. Deng, Y. Li, H. Li, S. Gao, and Y. Chen, “Privacy-preserving decentralized dual averaging for online optimization over directed networks,” IEEE Trans. Ind. Cyber-Phys. Syst., vol. 1, pp. 79–91, 2023.
|
[11] |
T. H. Chang, A. Nedić, and A. Scaglione, “Distributed constrained optimization by consensus-based primal-dual perturbation method,” IEEE Trans. Autom. Control, vol. 59, no. 6, pp. 1524–1538, Jun. 2014. doi: 10.1109/TAC.2014.2308612
|
[12] |
D. Yuan, D. W. C. Ho, and S. Xu, “Regularized primal-dual subgradient method for distributed constrained optimization,” IEEE Trans. Cybern., vol. 46, no. 9, pp. 2109–2118, Sept. 2016. doi: 10.1109/TCYB.2015.2464255
|
[13] |
D. Jakovetić, D. Bajović, J. Xavier, and J. M. F. Moura, “Primal-dual methods for large-scale and distributed convex optimization and data analytics,” Proc. IEEE, vol. 108, no. 11, pp. 1923–1938, Nov. 2020.
|
[14] |
S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed constrained optimization,” IEEE Trans. Autom. Control, vol. 62, no. 1, pp. 50–64, Jan. 2017. doi: 10.1109/TAC.2016.2541298
|
[15] |
H. Liu, W. Yu, W. X. Zheng, A. Nedić, and Y. Zhu, “Distributed constrained optimization algorithms with linear convergence rate over time-varying unbalanced graphs,” Automatica, vol. 159, p. 111346, Jan. 2024.
|
[16] |
J. Lei, H.-F. Chen, and H.-T. Fang, “Primal-dual algorithm for distributed constrained optimization,” Syst. Control Lett., vol. 96, pp. 110–117, Oct. 2016. doi: 10.1016/j.sysconle.2016.07.009
|
[17] |
Q. Liu, S. Yang, and J. Wang, “A collective neurodynamic approach to distributed constrained optimization,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 8, pp. 1747–1758, Aug. 2017. doi: 10.1109/TNNLS.2016.2549566
|
[18] |
S. Yang, Q. Liu, and J. Wang, “A multi-agent system with a proportional-integral protocol for distributed constrained optimization,” IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3461–3467, Jul. 2017. doi: 10.1109/TAC.2016.2610945
|
[19] |
Y. Zhu, W. Yu, G. Wen, G. Chen, and W. Ren, “Continuous-time distributed subgradient algorithm for convex optimization with general constraints,” IEEE Trans. Autom. Control, vol. 64, no. 4, pp. 1694–1701, Apr. 2019. doi: 10.1109/TAC.2018.2852602
|
[20] |
Y. Zhu, W. Yu, G. Wen, and G. Chen, “Projected primal-dual dynamics for distributed constrained nonsmooth convex optimization,” IEEE Trans. Cybern., vol. 50, no. 4, pp. 1776–1782, Apr. 2020.
|
[21] |
X. Li, L. Xie, and Y. Hong, “Distributed continuous-time nonsmooth convex optimization with coupled inequality constraints,” IEEE Trans. Control Netw. Syst., vol. 7, no. 1, pp. 74–84, Mar. 2020. doi: 10.1109/TCNS.2019.2915626
|
[22] |
H. Liu, W. X. Zheng, and W. Yu, “Continuous-time algorithm based on finite-time consensus for distributed constrained convex optimization,” IEEE Trans. Autom. Control, vol. 67, no. 5, pp. 2552–2559, May 2022. doi: 10.1109/TAC.2021.3079192
|
[23] |
S. Sun, J. Xu, and W. Ren, “Distributed continuous-time algorithms for time-varying constrained convex optimization,” IEEE Trans. Autom. Control, vol. 68, no. 7, pp. 3931–3946, Jul. 2023.
|
[24] |
N. Liu, H. Zhang, Y. Chai, and S. Qin, “Two-stage continuous-time triggered algorithms for constrained distributed optimization over directed graphs,” J. Franklin Inst., vol. 360, no. 3, pp. 2159–2181, Feb. 2023.
|
[25] |
W. Jia and S. Qin, “An adaptive penalty-like continuous-time algorithm to constrained distributed convex optimization,” J. Franklin Inst., vol. 359, no. 8, pp. 3692–3716, May 2022. doi: 10.1016/j.jfranklin.2022.03.046
|
[26] |
T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annu. Rev. Control, vol. 47, pp. 278–305, 2019.
|
[27] |
B. Huang, Y. Liu, K. I. Kou, and W. Gui, “Multi-timescale distributed approach to generalized-nash-equilibrium seeking in noncooperative nonconvex games,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 791–793, Mar. 2024. doi: 10.1109/JAS.2023.123909
|
[28] |
X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Communication compression for distributed nonconvex optimization,” IEEE Trans. Autom. Control, vol. 68, no. 9, pp. 5477–5492, Sept. 2023. doi: 10.1109/TAC.2022.3225515
|
[29] |
L. Xu, X. Yi, Y. Shi, K. H. Johansson, T. Chai, and T. Yang, “Distributed nonconvex optimization with event-triggered communication,” IEEE Trans. Autom. Control, vol. 69, no. 4, pp. 2745–2752, Apr. 2024. doi: 10.1109/TAC.2023.3339439
|
[30] |
X. Liao, Y. Zhao, and X. Zhou, “Neurodynamic flow approach for convex and quasi-convex optimization on Riemannian manifolds with diagonal metrics,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 54, no. 4, pp. 1995–2007, Apr. 2024. doi: 10.1109/TSMC.2023.3329492
|
[31] |
R. Xin, U. A. Khan, and S. Kar, “An improved convergence analysis for decentralized online stochastic non-convex optimization,” IEEE Trans. Signal Process., vol. 69, pp. 1842–1858, 2021.
|
[32] |
X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “A primal-dual SGD algorithm for distributed nonconvex optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 812–833, May 2022. doi: 10.1109/JAS.2022.105554
|
[33] |
J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,” IEEE Trans. Signal Process., vol. 66, no. 11, pp. 2834–2848, Jun. 2018. doi: 10.1109/TSP.2018.2818081
|
[34] |
J. Hou, X. Zeng, G. Wang, J. Sun, and J. Chen, “Distributed momentum-based frank-wolfe algorithm for stochastic optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 685–699, Mar. 2023.
|
[35] |
B. Houska, J. Frasch, and M. Diehl, “An augmented Lagrangian based algorithm for distributed nonconvex optimization,” SIAM J. Optim., vol. 26, no. 2, pp. 1101–1127, Jan. 2016. doi: 10.1137/140975991
|
[36] |
D. Li and X. L. Sun, “Local convexification of the Lagrangian function in nonconvex optimization,” J. Optim. Theory Appl., vol. 104, no. 1, pp. 109–120, Jan. 2000. doi: 10.1023/A:1004628822745
|
[37] |
N. Liu, S. Zhao, and S. Qin, “A power reformulation continuous-time algorithm for nonconvex distributed constrained optimization over multi-agent systems,” Neurocomputing, vol. 449, pp. 258–269, Aug. 2021. doi: 10.1016/j.neucom.2021.03.082
|
[38] |
Z. Xia, Y. Liu, and J. Wang, “A collaborative neurodynamic approach to distributed global optimization,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 53, no. 5, pp. 3141–3151, May 2023. doi: 10.1109/TSMC.2022.3221937
|
[39] |
Z. Xia, W. Yu, Y. Liu, W. Jia, and G. Chen, “Penalty-function-type multi-agent approaches to distributed nonconvex optimal resource allocation,” IEEE Trans. Netw. Sci. Eng., vol. 11, no. 5, pp. 4169–4180, Sept.–Oct. 2024. doi: 10.1109/TNSE.2024.3401748
|
[40] |
H. Che and J. Wang, “A collaborative neurodynamic approach to global and combinatorial optimization,” Neural Netw., vol. 114, pp. 15–27, Jun. 2019.
|
[41] |
W. Jia, T. Huang, and S. Qin, “A collective neurodynamic penalty approach to nonconvex distributed constrained optimization,” Neural Netw., vol. 171, pp. 145–158, Jun. 2024. doi: 10.1016/j.neunet.2023.12.011
|
[42] |
Y. Li, Z. Xia, and Y. Liu, “A p-power neurodynamic approach to distributed nonconvex optimization,” Commun. Nonlinear Sci. Numer. Simul., vol. 134, p. 107999, Jul. 2024. doi: 10.1016/j.cnsns.2024.107999
|
[43] |
S. S. Kia, J. Cortés, and S. Martínez, “Dynamic average consensus under limited control authority and privacy requirements,” Int. J. Robust Nonlinear Control, vol. 25, no. 13, pp. 1941–1966, Sept. 2015. doi: 10.1002/rnc.3178
|
[44] |
B. Gharesifard and J. Cortes, “Distributed continuous-time convex optimization on weight-balanced digraphs,” IEEE Trans. Autom. Control, vol. 59, no. 3, pp. 781–786, Mar. 2014.
|
[45] |
M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and Algorithms. 3rd ed. Hoboken, USA: John Wiley & Sons, 2013.
|
[46] |
H. K. Khalil, Nonlinear Systems. 3rd ed. Upper Saddle River, USA: Prentice-Hall, 2002.
|
[47] |
Y. Zhu, W. Yu, G. Wen, and W. Ren, “Continuous-time coordination algorithm for distributed convex optimization over weight-unbalanced directed networks,” IEEE Trans. Circuits Syst. Ⅱ: Express Briefs, vol. 66, no. 7, pp. 1202–1206, Jul. 2019. doi: 10.1109/TCSII.2018.2878250
|
[48] |
G. Mancino-Ball, Y. Xu, and J. Chen, “A decentralized primal-dual framework for non-convex smooth consensus optimization,” IEEE Trans. Signal Process., vol. 71, pp. 525–538, 2023.
|