A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
R. Li, Y. Tan, X. Su, and J. Huang, “A verification theorem for feedback Nash equilibrium in multiple-player nonzero-sum impulse game,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–3, Aug. 2024.
Citation: R. Li, Y. Tan, X. Su, and J. Huang, “A verification theorem for feedback Nash equilibrium in multiple-player nonzero-sum impulse game,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–3, Aug. 2024.

A Verification Theorem for Feedback Nash Equilibrium in Multiple-Player Nonzero-Sum Impulse Game

More Information
  • loading
  • [1]
    D. Cheng and S. Fu, “A survey on game theoretical control,” Control Theory & Applications, vol. 35, no. 5, pp. 588–592, May 2018.
    [2]
    J. Zhang, “Challenges and opportunities facing game theory and control: An interview with Tamer Basar,” National Science Review, vol. 7, no. 7, pp. 1142–1146, 2020. doi: 10.1093/nsr/nwz154
    [3]
    Q. Zhu and T. Basar, “Game-theoretic methods for robustness, security, and resilience of cyber-physical control systems: Games-in-games principle for optimal cross-layer resilient control systems,” IEEE Control Systems, vol. 35, no. 1, pp. 46–65, 2015. doi: 10.1109/MCS.2014.2364710
    [4]
    G. Pozharitskii, “Game problem of impulse soft encounter of two material points,” J. Applied Math. and Mechanics, vol. 36, no. 2, pp. 185–194, 1972. doi: 10.1016/0021-8928(72)90156-6
    [5]
    U. Sadana, P. Reddy, and G. Zaccour, “Feedback Nash equilibria in differential games with impulse control,” IEEE Trans. Autom. Control, 2022. doi: 10.1109/TAC.2022.3206253,2022
    [6]
    U. Sadana, P. V. Reddy, T. Basar, and G. Zaccour, “Sampled-data Nash equilibria in differential games with impulse controls,” Journal of Optimization Theory and Applications, vol. 190, no. 3, pp. 999–1022, 2021. doi: 10.1007/s10957-021-01920-0
    [7]
    U. Sadana, P. Reddy, and G. Zaccour, “Nash equilibria in nonzero-sum differential games with impulse control,” European J. Operational Research, vol. 295, no. 2, pp. 792–805, 2021. doi: 10.1016/j.ejor.2021.03.025
    [8]
    B. Asri and H. Lalioui, “Continuous and impulse controls differential game in finite horizon with Nash-equilibrium and application,” J. Comput. and Applied Math., vol. 424, p. 115009, 2023.
    [9]
    B. Asri, H. Lalioui, and S. Mazid, “A zero-sum deterministic impulse controls game in infinite horizon with a new HJBI-QVI,” Applied Math. & Optimization, vol. 88, p. 71, 2023.
    [10]
    R. Aid, M. Basei, G. Callegaro, et al., “Nonzero-sum stochastic differential games with impulse controls: a verification theorem with applications,” Math. Operations Research, vol. 45, no. 1, pp. 205–232, 2020. doi: 10.1287/moor.2019.0989
    [11]
    M. Basei, H. Cao, and X. Guo, “Nonzero-sum stochastic games and mean-field games with impulse controls,” Math. Operations Research, vol. 47, no. 1, pp. 341–366, 2022. doi: 10.1287/moor.2021.1131
    [12]
    G. I. Ibragimov and B. B. Rikhsiev, “On some sufficient conditions for optimality of the pursuit time in the differential game with multiple pursuers,” Automation and Remote Control, vol. 67, pp. 529–537, 2006. doi: 10.1134/S0005117906040023

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads(1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return