IEEE/CAA Journal of Automatica Sinica
Citation: | Brian Gaudet and Roberto Furfaro, "Adaptive Pinpoint and Fuel Efficient Mars Landing Using Reinforcement Learning," IEEE/CAA J. of Autom. Sinica, vol. 1, no. 4, pp. 397-411, 2014. |
[1] |
Steltzner A, Kipp D, Chen A, Burkhart D, Guernsey C, Mendeck G,Mitcheltree R, Powell R, Rivellini T, San Martin M, Way D. Marsscience laboratory entry, descent, and landing system. In: Proceedingsof the 2006 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2006.
|
[2] |
Shotwell R. Phoenix-the first Mars scout mission. Acta Astronautica,2005, 57(2-8): 121-134
|
[3] |
Singh G, SanMartin A M, Wong E C. Guidance and control design forpowered descent and landing on Mars. In: Proceedings of the 2006 IEEEAerospace Conference. Big Sky, MT: IEEE, 2007. 1-8
|
[4] |
Klumpp A R. Apollo Guidance, Navigation, and Control: Apollo Lunar-Descent Guidance. Massachusetts Institute of Technology, Charles StarkDraper Lab, TR R-695, Cambridge, MA, 1971.
|
[5] |
Klumpp A R. Apollo lunar descent guidance. Automatica, 1974, 10(2):133-146
|
[6] |
Chomel C T, Bishop R H. Analytical lunar descent guidance algorithm.Journal of Guidance, Control, and Dynamics, 2009, 32(3): 915-926
|
[7] |
Furfaro R, Selnick S, Cupples M L, Cribb M W. Non-linear slidingguidance algorithms for precision lunar landing (AAS 11-167). In:Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting.San Diego, CA: American Astronautical Society by Univelt, 2011.945-964
|
[8] |
Bishop C M. Pattern Recognition and Machine Learning. Berlin, Heidelberg:Springer, 2006.
|
[9] |
Calise A J, Rysdyk R T. Nonlinear adaptive flight control using neuralnetworks. IEEE Control Systems Magazine, 1998, 18(6): 14-25
|
[10] |
Sutton R S, Barto A G. Reinforcement Learning: An Introduction.Cambridge, MA: MIT Press, 1998. 100-103
|
[11] |
Gaudet B, Furfaro R. Adaptive Pinpoint and Fuel Efficient Mars Landingusing Reinforcement Learning (AAS 12-191). In: Proceeding of the 22ndSpaceflight Mechanics Meeting. San Diego, CA: American AstronauticalSociety by Univelt, 2012. 1309-1328
|
[12] |
Ng A Y, Kim H J, Jordan M I, Sastry S. Autonomous helicopter flightvia reinforcement learning. Advances in Neural Information ProcessingSystems 16. Cambridge, MA: MIT Press, 2004.
|
[13] |
Munos R, Szepesv´ari C. Finite-time bounds for fitted value iteration.Journal of Machine Learning Research, 2008, 1: 815-857
|
[14] |
Powell W B. Approximate Dynamic Programming: Solving the Cursesof Dimensionality (Second edition). Hoboken, N.J.: Wiley, 2011.
|
[15] |
Bishop C M. Pattern Recognition and Machine Learning. Berlin, Heidelberg:Springer, 2006.
|
[16] |
Koller D, Friedman N. Probabilistic Graphical Models. Massachusetts:MIT Press, 2009.
|
[17] |
Tuckness D G. Analysis of a terminal landing on Mars. Journal ofSpacecraft and Rockets, 1995, 32(1): 142-148
|
[18] |
Coates A, Abbeel P, Ng A Y. Learning for control from multipledemonstrations. In: Proceedings of the 25th International Conferenceon Machine Learning. New York, USA: ACM, 2008. 144-151
|
[19] |
Huntington G T. Advancement and Analysis of Gauss PseudospectralTranscription for Optimal Control Problems [Ph. D. dissertation], MassachusettsInstitute of Technology, Cambridge MA, 2007
|
[20] |
Françolin C C, Benson D A, Hager W W, Rao A V. Costate approximationin optimal control using integral Gaussian quadrature orthogonalcollocation methods. Optimal Control Applications and Methods, to bepublished
|
[21] |
Patterson M A, Hager W W, Rao A V. A ph mesh refinement methodfor optimal control. Optimal Control Applications and Methods, to bepublished
|
[22] |
Patterson M A, Rao A V. GPOPS-II: a MATLAB software for solvingmultiple-phase optimal control problems using Hp-adaptive Gaussianquadrature collocation methods and sparse nonlinear programming.ACM Transactions on Mathematical Software, 2013, 39(3), Article 1
|
[23] |
Patterson M A, Rao A V. Exploiting sparsity in direct collocationpseudospectral methods for solving optimal control problems. Journalof Spacecraft and Rockets, 2012, 49(2): 354-377
|
[24] |
Darby C L, Garg D, Rao A V. Costate estimation using multiple-intervalpseudospectral methods. Journal of Spacecraft and Rockets, 2011, 48(5):856-866
|
[25] |
Darby C L, Hager W W, Rao A V. An Hp-adaptive pseudospectralmethod for solving optimal control problems. Optimal Control Applicationsand Methods, 2011, 32(4): 476-502
|
[26] |
Garg D, Patterson M A, Françolin C, Darby C L, Huntington G T,Hager W W, Rao A V. Direct trajectory optimization and costate estimationof finite-horizon and infinite-horizon optimal control problemsusing a Radau pseudospectral method. Computational Optimization andApplications, 2011, 49(2): 335-358
|
[27] |
Darby C L, Hager W W, Rao A V. Direct trajectory optimization using avariable low-order adaptive pseudospectral method. Journal of Spacecraftand Rockets, 2011, 48(3): 433-445
|
[28] |
Garg D, Hager W W, Rao A V. Pseudospectral methods for solvinginfinite-horizon optimal control problems. Automatica, 2011, 47(4):829-837
|
[29] |
Rao A V, Benson D A, Darby C, Patterson M A, Francolin C, SandersI, Huntington G T. Algorithm 902: GPOPS, A MATLAB softwarefor solving multiple-phase optimal control problems using the Gausspseudospectral method. ACM Transactions on Mathematical Software,2010, 37(2), Article 22
|
[30] |
MacKay D J C. Bayesian interpolation. Neural Computation, 1992, 4(3):415-447
|
[31] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations byback-propagating errors. Nature, 1986, 323(6088): 533-536
|
[32] |
Gonz´alez R. Neural Networks for Variational Problems in Engineering[Ph.D dissertation], University of Catalonia, Spain, 2008
|
[33] |
Spall J C. Introduction to Stochastic Search and Optimization. New York:Wiley, 2003.
|
[34] |
Fu M C. What you should know about simulation and derivatives. NavalResearch Logistics (NRL), 2008, 55(8): 723-736
|
[35] |
Acikmese B, Ploen S R. Convex programming approach to powereddescent guidance for mars landing. Journal of Guidance, Control, andDynamics, 2007, 30(5): 1353-1366
|
[36] |
Gill P E, Murray W, Saunders M A. SNOPT: an SQP algorithm for largescaleconstrained optimization. SIAM Review, 2005, 47(1): 99-131
|