Citation: | K. Mao, P. Wei, Y. Wang, M. Liu, S. Wang, and N. Zheng, “CSDD: A benchmark dataset for casting surface defect detection and segmentation,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 5, pp. 1–13, May 2025. |
[1] |
J. Masci, U. Meier, G. Fricout, and J. Schmidhuber, “Multi-scale pyramidal pooling network for generic steel defect classification,” The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2013.
|
[2] |
R. Ren, T. Hung, and K. C. Tan, “A generic deep-learning-based approach for automated surface inspection,” IEEE transactions on cybernetics, vol. 48, no. 3, pp. 929–940, 2017.
|
[3] |
V. Natarajan, T.-Y. Hung, S. Vaikundam, and L.-T. Chia, “Convolutional networks for voting-based anomaly classification in metal surface inspection,” 2017 IEEE International Conference on Industrial Technology (ICIT), pp. 986–991, 2017.
|
[4] |
X. Tao, D. Zhang, W. Ma, X. Liu, and D. Xu, “Automatic metallic surface defect detection and recognition with convolutional neural networks,” Applied Sciences, vol. 8, no. 9, p. 1575, 2018. doi: 10.3390/app8091575
|
[5] |
T. Wang, Y. Chen, M. Qiao, and H. Snoussi, “A fast and robust convolutional neural network-based defect detection model in product quality control,” The International Journal of Advanced Manufacturing Technology, vol. 94, pp. 3465–3471, 2018. doi: 10.1007/s00170-017-0882-0
|
[6] |
Y.-J. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and O. Büyüköztürk, “Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types,” Computer-Aided Civil and Infrastructure Engineering, vol. 33, no. 9, pp. 731–747, 2018. doi: 10.1111/mice.12334
|
[7] |
L. Cui, X. Jiang, M. Xu, W. Li, P. Lv, and B. Zhou, “Sddnet: A fast and accurate network for surface defect detection,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–13, 2021.
|
[8] |
X. Jiang, F. Yan, Y. Lu, K. Wang, S. Guo, T. Zhang, Y. Pang, J. Niu, and M. Xu, “Joint attention-guided feature fusion network for saliency detection of surface defects,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–12, 2022.
|
[9] |
H. Wang, R. Zhang, M. Feng, Y. Liu, and G. Yang, “Global contextbased self-similarity feature augmentation and bidirectional feature fusion for surface defect detection,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–12, 2023.
|
[10] |
H. Zhou, R. Yang, R. Hu, C. Shu, X. Tang, and X. Li, “Etdnet: Efficient transformer-based detection network for surface defect detection,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–14, 2023.
|
[11] |
Y. Li, X. Wang, Z. He, Z. Wang, K. Cheng, S. Ding, Y. Fan, X. Li, Y. Niu, S. Xiao et al, “Industry-oriented detection method of pcba defects using semantic segmentation models,” IEEE/CAA Journal of Automatica Sinica, vol. 11, no. 6, pp. 1438–1446, 2024. doi: 10.1109/JAS.2024.124422
|
[12] |
Y. Han, L. Wang, Y. Wang, and Z. Geng, “Intelligent small sample defect detection of concrete surface using novel deep learning integrating improved yolov5,” IEEE/CAA Journal of Automatica Sinica, vol. 11, no. 2, pp. 545–547, 2024. doi: 10.1109/JAS.2023.124035
|
[13] |
K. Song and Y. Yan, “A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects,” Applied Surface Science, vol. 285, pp. 858–864, 2013. doi: 10.1016/j.apsusc.2013.09.002
|
[14] |
D. Tabernik, S. Sela, J. Skvarč, and D. Skočaj, “Segmentation-Based Deep-Learning Approach for Surface-Defect Detection,”Journal of Intelligent Manufacturing, May 2019.
|
[15] |
J. Božič, D. Tabernik, and D. Skočaj, “Mixed supervision for surface-defect detection: from weakly to fully supervised learning,”Computers in Industry, 2021.
|
[16] |
T. Schlagenhauf and M. Landwehr, “Industrial machine tool component surface defect dataset,” Data in Brief, vol. 39, p. 107643, 2021. doi: 10.1016/j.dib.2021.107643
|
[17] |
X. Lv, F. Duan, J.-j. Jiang, X. Fu, and L. Gan, “Deep metallic surface defect detection: The new benchmark and detection network,”Sensors, vol. 20, no. 6, 2020.
|
[18] |
G. Song, K. Song, and Y. Yan, “Saliency detection for strip steel surface defects using multiple constraints and improved texture features,” Optics and Lasers in Engineering, vol. 128, p. 106000, 2020. doi: 10.1016/j.optlaseng.2019.106000
|
[19] |
i. i. O. Alexey Grishin, BorisV, “Severstal: Steel defect detection,”2019.[Online]. Available: https://kaggle.com/competitions/severstal-steel-defect-detection
|
[20] |
G. Jocher, “Ultralytics yolov5,”2020.[Online]. Available: https://github.com/ultralytics/yolov5
|
[21] |
S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,”Advances in neural information processing systems, vol. 28, 2015.
|
[22] |
Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object detection,”in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6154–6162.
|
[23] |
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,”Computer Vision– ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 21–37, 2016.
|
[24] |
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss x for dense object detection,” Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.
|
[25] |
X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,”arXiv preprint arXiv: 1904.07850, 2019.
|
[26] |
Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage object detection,” Proceedings of the IEEE/CVF international conference on computer vision, pp. 9627–9636, 2019.
|
[27] |
X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr: Deformable transformers for end-to-end object detection,”arXiv preprint arXiv: 2010.04159, 2020.
|
[28] |
D. Meng, X. Chen, Z. Fan, G. Zeng, H. Li, Y. Yuan, L. Sun, and J. Wang, “Conditional detr for fast training convergence,” Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3651–3660, 2021.
|
[29] |
G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics yolov8,”2023. [Online]. Available: https://github.com/ultralytics/ultralytics
|
[30] |
L. L. e. a. Ao Wang, Hui Chen, “Yolov10: Real-time end-to-end object detection,”arXiv preprint arXiv: 2405.14458, 2024.
|
[31] |
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” European conference on computer vision, pp. 213–229, 2020.
|
[32] |
J. A. Tsanakas, D. Chrysostomou, P. N. Botsaris, and A. Gasteratos, “Fault diagnosis of photovoltaic modules through image processing and canny edge detection on field thermographic measurements,”International Journal of Sustainable Energy, 2015.
|
[33] |
X.-c. Yuan, L.-s. Wu, and Q. Peng, “An improved otsu method using the weighted object variance for defect detection,”Applied surface science, 2015.
|
[34] |
N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979. doi: 10.1109/TSMC.1979.4310076
|
[35] |
W. C. Li and D. M. Tsai, “Automatic saw-mark detection in multicrystalline solar wafer images,”Solar Energy Materials and Solar Cells, 2011.
|
[36] |
Y. G. Cen, R. Z. Zhao, L. H. Cen, L. H. Cui, Z. J. Miao, and W. Zhe, “Defect inspection for tft-lcd images based on the low-rank matrix reconstruction,”Neurocomputing, 2015.
|
[37] |
C. Jian, J. Gao, and Y. Ao, “Automatic surface defect detection for mobile phone screen glass based on machine vision,” Applied Soft Computing, vol. 52, pp. 348–358, 2017. doi: 10.1016/j.asoc.2016.10.030
|
[38] |
N. Zeng, P. Wu, Z. Wang, H. Li, W. Liu, and X. Liu, “A smallsized object detection oriented multi-scale feature fusion approach with application to defect detection,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–14, 2022.
|
[39] |
S. Jain, G. Seth, A. Paruthi, U. Soni, and G. Kumar, “Synthetic data augmentation for surface defect detection and classification using deep learning,” Journal of Intelligent Manufacturing, pp. 1–14, 2022.
|
[40] |
J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440, 2015.
|
[41] |
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,”Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part Ⅲ 18, pp. 234–241, 2015.
|
[42] |
L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,”arXiv preprint arXiv: 1706.05587, 2017.
|
[43] |
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848, 2017.
|
[44] |
L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoderdecoder with atrous separable convolution for semantic image segmentation,” Proceedings of the European conference on computer vision (ECCV), pp. 801–818, 2018.
|
[45] |
H. Wu, J. Zhang, K. Huang, K. Liang, and Y. Yu, “Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation,”arXiv preprint arXiv: 1903.11816, 2019.
|
[46] |
T. Wu, S. Tang, R. Zhang, J. Cao, and Y. Zhang, “Cgnet: A light-weight context guided network for semantic segmentation,” IEEE Transactions on Image Processing, vol. 30, pp. 1169–1179, 2020.
|
[47] |
H. Pan, Y. Hong, W. Sun, and Y. Jia, “Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes,”IEEE Transactions on Intelligent Transportation Systems, 2022.
|
[48] |
J. Xu, Z. Xiong, and S. P. Bhattacharyya, “Pidnet: A real-time semantic segmentation network inspired by pid controllers,” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 19529–19539, 2023.
|
[49] |
R. Strudel, R. Garcia, I. Laptev, and C. Schmid, “Segmenter: Transformer for semantic segmentation,” Proceedings of the IEEE/CVF international conference on computer vision, pp. 7262–7272, 2021.
|
[50] |
E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, “Segformer: Simple and efficient design for semantic segmentation with transformers,” Advances in Neural Information Processing Systems, vol. 34, pp. 12077–12090, 2021.
|
[51] |
B. Cheng, A. Schwing, and A. Kirillov, “Per-pixel classification is not all you need for semantic segmentation,” Advances in Neural Information Processing Systems, vol. 34, p. 17, 2021.
|
[52] |
B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar, “Masked-attention mask transformer for universal image segmentation,” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1290–1299, 2022.
|
[53] |
Y. Liu, Z. Shao, and N. Hoffmann, “Global attention mechanism: Retain information to enhance channel-spatial interactions,”arXiv preprint arXiv: 2112.05561, 2021.
|
[54] |
J. Chen, S.-h. Kao, H. He, W. Zhuo, S. Wen, C.-H. Lee, and S.- H. G. Chan, “Run, don’t walk: Chasing higher flops for faster neural networks,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, p. 12, 2023.
|
[55] |
S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” Proceedings of the European conference on computer vision (ECCV), pp. 3–19, 2018.
|
[56] |
K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “MMDetection: Open mmlab detection toolbox and benchmark,”arXiv preprint arXiv: 1906.07155, 2019.
|
[57] |
M. Contributors, “MMSegmentation: Openmmlab semantic segmentation toolbox and benchmark,”https://github.com/open-mmlab/mmsegmentation, 2020.
|