IEEE/CAA Journal of Automatica Sinica
Citation: | Long Ma, Haibo Min, Shicheng Wang, Yuan Liu and Shouyi Liao, "An Overview of Research in Distributed Attitude Coordination Control," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 2, pp. 121-133, 2015. |
[1] |
Scharf D P, Hadaegh F Y, Ploen S R. A survey of spacecraft formation flying guidance and control. Part II:Control. In:Proceedings of the 2004 American Control Conference. Boston, Massachusetts:IEEE, 2004. 2976-2985
|
[2] |
Ren W, Beard R W, Atkins E M. A survey of consensus problems in multi-agent coordination. In:Proceedings of the 2005 American Control Conference. Portland, OR, USA:IEEE, 2005. 1895-1864
|
[3] |
Murray R M. Recent research in cooperative control of multivehicle systems. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(5):571-583
|
[4] |
Sepulchre R. Consensus on nonlinear spaces. Annual Reviews in Control, 2011, 35(1):56-64
|
[5] |
Min Hai-Bo, Liu Yuan, Wang Shi-Cheng, Sun Fu-Chun. An overview on coordination control problem of multi-agent system. Acta Automatica Sinica, 2012, 38(10):1557-1570(in Chinese)
|
[6] |
Folta D, Bristow J, Hawkins A, Dell G. NASA's autonomous formation flying technology demonstration, earthobserving-1(EO-1). In:Proceedings of the 1st International Symposium on Formation Flying Missions and Technologies. Centre National d'Etudes Spatiales, 2002. 71-76
|
[7] |
Neeck S P, Magner T J, Paules G E. nasa's small satellite missions for earth observation. Acta Astronautica, 2005, 56(1-2):187-192
|
[8] |
Lawson P R. The terrestrial planet finder. In:Proceedings of the 2001 IEEE Aerospace Conference. Big Sky, Montana, USA:IEEE, 2001. 4/2005-4/2011
|
[9] |
Kang W, Yeh H H. Co-ordinated attitude control of multi-satellite systems. International Journal of Robust and Nonlinear Control, 2002, 12(2-3):185-205
|
[10] |
Chakravorty S. Design and Optimal Control of Multi-Spacecraft Interferometric Imaging Systems[Ph. D. dissertation], University of Michigan, Ann Arbor, MI, 2004
|
[11] |
Hussein I I. Motion Planning for Multi-Spacecraft Interferometric Imaging Systems.[Ph. D. dissertation], University of Michigan, Ann Arbor, MI, 2005
|
[12] |
Joshi S M, Kelkar A G, Wen J T-Y. Robust attitude stabilization of spacecraft using nonlinear quaternion feedback. IEEE Transactions on Automatic Control, 1995, 40(10):1800-1803
|
[13] |
Shuster M D. A survey of attitude representations. Journal of the Astronautical Sciences, 1993, 41(4):439-517
|
[14] |
Ren W. Distributed leaderless consensus algorithms for networked Euler-Lagrange systems. International Journal of Control, 2009, 82(11):2137-2149
|
[15] |
Bakule L. Decentralized control:an overview. Annual Reviews in Control, 2008, 32(1):87-98
|
[16] |
Das A, Lewis F L. Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica, 2010, 46(12):2014-2021
|
[17] |
Cai H, Huang J. The leader-following attitude control of multiple rigid spacecraft systems. Automatica, 2014, 50(4):1109-1115
|
[18] |
Panagi P, Polycarpou M M. Decentralized fault tolerant control of a class of interconnected nonlinear systems. IEEE Transactions on Automatic Control, 2011, 56(1):178-184
|
[19] |
Jin E D, Jiang X L, Sun Z W. Robust decentralized attitude coordination control of spacecraft formation. Systems and Control Letters, 2008, 57(7):567-577
|
[20] |
Cong B L, Liu X D, Chen Z. Distributed attitude synchronization of formation flying via consensus-based virtual structure. Acta Astronautica, 2011, 68(11-12):1973-1986
|
[21] |
Liang H Z, Wang J Y, Sun Z W. Robust decentralized coordinated attitude control of spacecraft formation. Acta Astronautica, 2011, 69(5-6):280-288
|
[22] |
Yang D P, Liu X D, Gan C, Guo Y H. Distributed adaptive attitude synchronization of multiple spacecraft with external disturbances. In:Proceedings of the 25th Chinese Control and Decision Conference. Guiyang, China:IEEE, 2013. 692-697
|
[23] |
Fadakar I, Fidan B, Huissoon J. Robust adaptive attitude synchronization of rigid body networks with unknown inertias. In:Proceedings of the 9th Asian Control Conference. Istanbul, Turkey:IEEE, 2013. 1-6
|
[24] |
Zheng Z, Song S M. Autonomous attitude coordinated control for spacecraft formation with input constraint, model uncertainties, and external disturbances. Chinese Journal of Aeronautics, 2014, 27(3):602-612
|
[25] |
Chen B S, Wu C S, Jan Y W. Adaptive fuzzy mixed H2/H∞ attitude control of spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1343-1359
|
[26] |
Zanchettin A M, Calloni A, Lovera M. Robust magnetic attitude control of satellites. IEEE/ASME Transactions on Mechatronics, 2013, 18(4):1259-1268
|
[27] |
Lizarralde F,Wen J T. Attitude control without angular velocity measurement:a passivity approach. IEEE Transactions on Automatic Control, 1996, 41(3):468-472
|
[28] |
Costic B T, Dawson D M, de Queiroz M S, Kapila V. A quaternion-based adaptive attitude tracking controller without velocity measurements. In:Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia:IEEE, 2000. 2424-2429
|
[29] |
Lawton J R, Beard R W. Synchronized multiple spacecraft rotations. Automatica, 2002, 38(8):1359-1364
|
[30] |
Bondhus A K, Pettersen K Y, Gravdahl J T. Leader/Follower synchronization of satellite attitude without angular velocity measurements. In:Proceedings of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. Seville, Spain:IEEE, 2005. 7270-7277
|
[31] |
Kristiansen R, Loría A, Chaillet A, Nicklasson P J. Spacecraft relative rotation tracking without angular velocity measurements. Automatica, 2009, 45(3):750-756
|
[32] |
Mehrabian A R, Tafazoli S, Khorasani K. Coordinated attitude control of spacecraft formation without angular velocity feedback:a decentralized approach. In:Proceedings of the 2009 AIAA Guidance, Navigation, and Control Conference. Chicago, Illinois:AIAA, 2009. 1-15
|
[33] |
Abdessameud A, Tayebi A. Attitude synchronization of a spacecraft formation without velocity measurement. In:Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico:IEEE, 2008. 3719-3724
|
[34] |
Abdessameud A, Tayebi A. Decentralized attitude alignment control of spacecraft within a formation without angular velocity measurements. In:Proceedings of the 17th World Congress the International Federation of Automatic Control. Seoul, Korea:IFAC, 2008. 1766-1771
|
[35] |
Abdessameud A, Tayebi A. On the coordinated attitude alignment of a group of spacecraft without velocity measurements. In:Proceedings of the 48th IEEE Joint Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China:IEEE, 2009. 1476-1481
|
[36] |
Abdessameud A, Tayebi A. Attitude synchronization of a group of spacecraft without velocity measurements. IEEE Transactions on Automatic Control, 2009, 54(11):2642-2648
|
[37] |
Meng Z Y, Ren W, You Z. Decentralised cooperative attitude tracking using modified Rodriguez parameters based on relative attitude information. International Journal of Control, 2010, 83(12):2427-2439
|
[38] |
Zou A M, Kumar K D. Adaptive attitude control of spacecraft without velocity measurements using Chebyshev neural network. Acta Astronautica, 2010, 66(5-6):769-779
|
[39] |
Zou A M, Kumar K D, Hou Z G. Attitude coordination control for a group of spacecraft without velocity measurements. IEEE Transactions on Control Systems Technology, 2012, 20(5):1160-1174
|
[40] |
Gao D, Lv J T, Wang B L. Distributed coordinated attitude control for multiple rigid bodies. Procedia Engineering, 2012, 29:2532-2538
|
[41] |
Hu Qing-Lei, Zhou Jia-Kang, Ma Guang-Fu. Angle velocity free attitude synchronization adaptive tracking control for satellite formation flying with time-varying delays. Acta Automatica Sinica, 2012, 38(3):462-468(in Chinese)
|
[42] |
Lv J T, Gao D, Meng S M. Attitude synchronization for multiple rigid bodies with time delays. Procedia Engineering, 2012, 29:2539-2544
|
[43] |
Wang H L, Xie Y C. A new analysis tool for attitude synchronization of multiple spacecraft with communication delays. In:Proceedings of the 30th Chinese Control Conference. Yantai, China:IEEE, 2011. 4576-4581
|
[44] |
Abdessameud A, Tayebi A, Polushin I G. Rigid body attitude synchronization with communication delays. In:Proceedings of the 2012 American Control Conference. Montreal, QC:IEEE, 2012. 3736-3741
|
[45] |
Abdessameud A, Tayebi A, Polushin I G. Attitude synchronization of multiple rigid bodies with communication delays. IEEE Transactions on Automatic Control, 2012, 57(9):2405-2411
|
[46] |
Zhou J K, Ma G F, Hu Q L. Delay depending decentralized adaptive attitude synchronization tracking control of spacecraft formation. Chinese Journal of Aeronautics, 2012, 25(3):406-415
|
[47] |
Zhou Jia-Kang, Hu Qing-Lei, Ma Guang-Fu, Lü Yue-Yong. Adaptive L2-gain cooperative attitude control of satellite formation flying with time-varying delay. Acta Aeronautica et Astronautica Sinica, 2011, 32(2):321-329(in Chinese)
|
[48] |
Li G M, Liu L D. Robust adaptive coordinated attitude control problem with unknown communication delays and uncertainties. Procedia Engineering, 2012, 29:1447-1455
|
[49] |
Li G M, Liu L D. Coordinated multiple spacecraft attitude control with communication time delays and uncertainties. Chinese Journal of Aeronautics, 2012, 25(5):698-708
|
[50] |
Wang H L, Tan S P. Globally convergent attitude controlled synchronization of networked spacecraft on strongly connected graphs. In:Proceedings of the 31st Chinese Control Conference. Hefei, China:IEEE, 2012. 5780-5785
|
[51] |
Li J Q, Kumar K D. Decentralized fault-tolerant control for satellite attitude synchronization. IEEE Transactions on Fuzzy Systems, 2012, 20(3):572-586
|
[52] |
Zou A M, Kumar K D. Robust attitude coordination control for spacecraft formation flying under actuator failures. Journal of Guidance, Control, and Dynamics, 2012, 35(4):1247-1255
|
[53] |
Bošković J D, Li S M, Mehra R K. Robust tracking control design for spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2004, 27(4):627-633
|
[54] |
Bang H, Tahk M J, Choi H D. Large angle attitude control of spacecraft with actuator saturation. Control Engineering Practice, 2003, 11(9):989-997
|
[55] |
Lv J T, Gao D, Cao X B. Satellite attitude tracking control under control saturation. In:Proceedings of the 2nd International Symposium on Systems and Control in Aerospace and Astronautics. Shenzhen, China:IEEE, 2008. 1-5
|
[56] |
Lv Jian-Ting, Ma Guang-Fu, Li Chuan-Jiang. Output feedback controller design for satellite attitude regulation subject to control saturation. Journal of Astronautics, 2008, 29(4):1320-1323(in Chinese)
|
[57] |
Lv Jian-Ting, Gao Dai. Coordinated attitude output feedback control of satellite formation flying. Journal of Astronautics, 2010, 31(12):2691-2696(in Chinese)
|
[58] |
Lyu J T, Gao D. Attitude synchronization for multiple spacecraft with input constraints. Chinese Journal of Aeronautics, 2014, 27(2):321-327
|
[59] |
Bacconi F, Mosca E, Casavola A. Hybrid constrained formation flying control of micro-satellites. IET Control Theory and Applications, 2007, 1(2):513-521
|
[60] |
Mehrabian A R, Tafazoli S, Khorasani K. Quaternion-based attitude synchronization and tracking for spacecraft formation subject to sensor and actuator constraints. In:Proceedings of the 2010 AIAA Guidance, Navigation, and Control Conference. Toronto, Ontario Canada:AIAA, 2010. 1-21
|
[61] |
Lv Y Y, Hu Q L, Ma G F, Zhou J K. 6 DOF synchronized control for spacecraft formation flying with input constraint and parameter uncertainties. ISA Transactions, 2011, 50(4):573-580
|
[62] |
Zhang Bao-Qun, Song Shen-Min, Chen Xing-Lin. Attitude coordination control of formation flying satellites under control saturation. Journal of Astronautics, 2011, 32(5):1060-1069(in Chinese)
|
[63] |
Zou A M, Kumar K D. Neural Network-based distributed attitude coordination control for spacecraft formation flying with input saturation. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7):1155-1162
|
[64] |
de Ferrán S X. The ISO Spacecraft. ESA Bulletin, 1991, 84:17-24
|
[65] |
Kim Y, Mesbahi M, Singh G, Hadaegh F Y. On the constrained attitude control problem. In:Proceedings of the 2004 AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence, Rhode Island, 2004. 1-23
|
[66] |
Kim Y, Mesbahi M. Quadratically constrained attitude control via semidefinite programming. IEEE Transactions on Automatic Control, 2004, 49(5):731-735
|
[67] |
Kim Y, Mesbahi M, Singh G, Hadaegh F Y. On the convex parameterization of constrained spacecraft reorientation. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1097-1109
|
[68] |
Okoloko I, Kim Y. Attitude synchronization of multiple spacecraft with cone avoidance constraints. Systems and Control Letters, 2014, 69:73-79
|
[69] |
Koditschek D E, Rimon E. Robot navigation functions on manifolds with boundary. Advances in Applied Mathematics, 1990, 11(4):412-442
|
[70] |
Xu R, Cheng X J, Cui H T. Autonomous pointing avoidance of spacecraft attitude maneuver using Backstepping control method. In:Proceedings of the 2011 International Conference on Electric and Electronics:Electrical Engineering and Control, Lecture Notes in Electrical Engineering. Nanchang, China:Springer, 2011, 98:817-825
|
[71] |
McInnes C R. Large angle slew maneuvers with autonomous sun vector avoidance. Journal of Guidance, Control, and Dynamics, 1994, 17(4):875-877
|
[72] |
Garcia I, How J P. Trajectory optimization for satellite reconfiguration maneuvers with position and attitude constraints. In:Proceedings of the 2005 American Control Conference. 2005. 889-894
|
[73] |
Cheng Xiao-Jun, Cui Hu-Tao, Cui Ping-Yuan, Xu Rui. A predictive control algorithm for spacecraft attitude maneuver with non-convex geometric constraint. Journal of Astronautics, 2011, 32(5):1070-1076(in Chinese)
|
[74] |
Cui Hu-Tao, Cheng Xiao-Jun. Attitude maneuver control of spacecraft with pointing constraints considering unknown input saturation. Journal of Astronautics, 2013, 34(3):377-383(in Chinese)
|
[75] |
Zheng Zhong, Song Shen-Min, Zhang Bao-Qun. Spacecraft safe attitude tracking control by considering attitude forbidden constraint. Systems Engineering and Electronics, 2013, 35(3):574-579
|
[76] |
Ren W. Formation keeping and attitude alignment for multiple spacecraft through local interactions. Journal of Guidance, Control, and Dynamics, 2007, 30(2):633-638
|
[77] |
Ren W. Distributed attitude synchronization for multiple rigid bodies with Euler-Lagrange equations of motion. In:Proceedings of the 46th IEEE Conference of Decision and Control. New Orleans, LA:IEEE, 2007. 2363-2368
|
[78] |
Ren W. Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Transactions on Control Systems Technology, 2010, 18(2):383-392
|
[79] |
Zhang H B, Mei J, Ma G F. Attitude coordinated tracking for formation spacecraft under a directed graph. In:Proceedings of the 30th Chinese Control Conference. Yantai, China:IEEE, 2011. 4900-4905
|
[80] |
Wu B L, Wang D W, Poh E K. Decentralized robust adaptive control for attitude synchronization under directed communication topology. Journal of Guidance, Control, and Dynamics, 2011, 34(4):1276-1282
|
[81] |
Li Z K, Duan Z S. Distributed adaptive attitude synchronization of multiple spacecraft. Science China Technological Sciences, 2011, 54(8):1992-1998
|
[82] |
Thunberg J, Song W J, Hu X M. Distributed attitude synchronization control of multi-agent systems with directed topologies. In:Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China:IEEE, 2012. 958-963
|
[83] |
Meng Z Y, You Z, Li G H, Fan C S. Cooperative attitude control of multiple rigid bodies with multiple time-varying delays and dynamically changing topologies. Mathematical Problems in Engineering, 2010, 2010:Article ID 621594, DOI: 10.1155/2010/621594
|
[84] |
Jin E D, Sun Z W. Robust attitude synchronisation controllers design for spacecraft formation. IET Control Theory and Applications, 2009, 3(3):325-339
|
[85] |
Bi Peng, Luo Jian-Jun, Zhang Bo. Cooperate control algorithm for spacecraft formation flying based on consensus theory. Journal of Astronautics, 2010, 31(1):70-74(in Chinese)
|
[86] |
Sarlette A, Sepulchre R, Leonard N E. Autonomous rigid body attitude synchronization. Automatica, 2009, 45(2):572-577
|
[87] |
Zhang Bao-Qun, Song Shen-Min, Chen Xing-Lin. Robust coordinated control for formation flying satellites with time delays and switching topologies. Journal of Astronautics, 2012, 33(7):910-919(in Chinese)
|
[88] |
Thunberg J, Song W J, Montijano E, Hong Y G, Hu X M. Distributed attitude synchronization control of multi-agent systems with switching topologies. Automatica, 2014, 50(3):832-840
|
[89] |
Song W J, Hong Y G, Hu X M. Distributed relative attitude formation control of multiple rigid-body agents with switching topologies. In:Proceedings of the 32nd Chinese Control Conference. Xi'an, China:IEEE, 2013. 7125-7130
|
[90] |
Chen S, Shi P, Zhang W G, Zhao L D. Finite-time consensus on strongly convex balls of Riemannian manifolds with switching directed communication topologies. Journal of Mathematical Analysis and Applications, 2014, 409(2):663-675
|
[91] |
Windeknecht T G. Optimal stabilization of rigid body attitude. Journal of Mathematical Analysis and Applications, 1963, 6(2):325-335
|
[92] |
Dixon M V, Edelbaum T N, Potter J E, Vandervelde W E. Fuel optimal reorientation of axisymmetric spacecraft. Journal of Spacecraft and Rockets, 1970, 7(11):1345-1351
|
[93] |
Vadali S R, Junkins J L. Spacecraft large angle rotational maneuvers with optimal momentum transfer. Journal of the Astronautical Sciences, 1983, 31(2):217-235
|
[94] |
VadMi S R, Kraige L G, Junkins J L. New results on the optimal spacecraft attitude maneuver problem. Journal of Guidance, Control, and Dynamics, 1984, 7(3):378-380
|
[95] |
Yang C C, Li C L, Wu C J. Minimal energy maneuvering control of a rigid spacecraft with momentum transfer. Journal of the Franklin Institute, 2007, 344(7):991-1005
|
[96] |
Zhang Shi-Feng, Qian Shan, Li Peng-Kui. Study on the minimal energy maneuvering control of a rigid spacecraft with momentum transfer. Journal of Astronautics, 2009, 30(4):1504-1509(in Chinese)
|
[97] |
Scrivener S L, Thomson R C. Survey of time-optimal attitude maneuvers. Journal of Guidance, Control, and Dynamics, 1994, 17(2):225-233
|
[98] |
Yan H. Dynamics and Real-Time Optimal Control of Satellite Attitude and Satellite Formation Systems[Ph. D. dissertation], Texas A&M University, USA, 2006
|
[99] |
Dimarogonas D V, Tsiotras P, Kyriakopoulos K J. Leader-follower cooperative attitude control of multiple rigid bodies. Systems and Control Letters, 2009, 58(6):429-435
|
[100] |
Ji M, Ferrari-Trecate G, Egerstedt M, Buffa A. Containment control in mobile networks. IEEE Transactions on Automatic Control, 2008, 53(8):1972-1975
|
[101] |
Meng Z Y, Ren W, You Z. Distributed finite-time attitude containment control for multiple rigid bodies. Automatica, 2010, 46(12):2092-2099
|
[102] |
Zhang An-Hui, Kong Xian-Ren, Zhang Shi-Jie, Wang Feng. Distributed attitude cooperative control with multiple leaders. Journal of Harbin Institute of Technology, 2013, 45(3):1-6(in Chinese)
|
[103] |
Yu S H, Yu X H, Shirinzadeh B, Man Z H. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 2005, 41(11):1957-1964
|
[104] |
Cao Y C, Ren W, Meng Z Y. Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Systems & Control Letters, 2010, 59(9):522-529
|
[105] |
Jin E D, Sun Z W. Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerospace Science and Technology, 2008, 12(4):324-330
|
[106] |
Zou A M, Kumar K D, Hou Z G, Liu X. Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev Neural Network. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2011, 41(4):950-963
|
[107] |
Zou A M, Kumar K D, Hou Z G. Corrections to "Finite-time attitude tracking control for spacecraft using terminal sliding model and Chebyshev Neural Network". IEEE Transactions on Cybernetics, 2013, 43(2):803
|
[108] |
Du H B, Li S H, Qian C J. Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Transactions on Automatic Control, 2011, 56(11):2711-2717
|
[109] |
Zou A M, Kumar K D. Distributed attitude coordination control for spacecraft formation flying. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2):1329-1346
|
[110] |
Liang H Z, Sun Z W, Wang J Y. Finite-time attitude synchronization controllers design for spacecraft formations via behavior-based approach. Journal of Aerospace Engineering, 2013, 227(11):1737-1753
|
[111] |
Liang H Z, Sun Z W, Wang J Y. Robust decentralized attitude control of spacecraft formations under time-varying topologies, model uncertainties and disturbances. Acta Astronautica, 2012, 81(2):445-455
|
[112] |
Ma G F, Zhang H B, Mei J. Distributed finite-time attitude regulation control for multiple spacecraft systems. In:Proceedings of the 31st Chinese Control Conference. Hefei, China:IEEE, 2012. 6439-6443
|
[113] |
Lyu J T, Gao D. Attitude synchronization for multiple spacecraft with input constraints. Chinese Journal of Aeronautics, 2014, 27(2):321-32758
|
[114] |
Zhou N, Xia Y Q, Lu K F. Attitude synchronization of rigid spacecraft using terminal sliding mode. In:Proceedings of the 32nd Chinese Control Conference. Xi'an, China:IEEE, 2013. 706-711
|
[115] |
Cortés J. Finite-time convergent gradient flows with applications to network consensus. Automatica, 2006, 42(11):1993-2000
|
[116] |
Chen G, Lewis F L, Xie L H. Finite-time distributed consensus via binary control protocols. Automatica, 2011, 47(9):1962-1968
|
[117] |
Hui Q. Finite-time rendezvous algorithms for mobile autonomous agents. IEEE Transactions on Automatic Control, 2011, 56(1):207-211
|
[118] |
Yu X H, Xu J X. Variable structure systems:towards the 21st century. Lecture Notes in Control and Information Sciences. Berlin, Heidelberg:Springer-Verlag, 2002.
|
[119] |
Jin Yong-Qiang, Liu Xiang-Dong, Hou Chao-Zhen. Adaptive sliding mode control of large attitude angle maneuver for spacecraft. Transactions of Beijing Institute of Technology, 2007, 27(5):422-426(in Chinese)
|
[120] |
Cong B L, Liu X D, Chen Z. Exponential time-varying sliding mode control for large angle attitude eigenaxis maneuver of rigid spacecraft. Chinese Journal of Aeronautics, 2010, 23(4):447-453
|
[121] |
Lu K F, Xia Y Q, Zhu Z, Basin M V. Sliding mode attitude tracking of rigid spacecraft with disturbances. Journal of the Franklin Institute, 2012, 349(2):413-440
|
[122] |
Pukdeboon C, Zinober A S I, Thein M-W L. Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers. IEEE Transactions on Industrial Electronics, 2010, 57(4):1436-1444
|
[123] |
Ma K M. Comments on "Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers". IEEE Transactions on Industrial Electronics, 2012, 60(7):2771-2773
|
[124] |
Wu Y H, Cao X B, Zheng P F, Zeng Z K. Variable structure-based decentralized relative attitude-coordinated control for satellite formation. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(12):18-25
|
[125] |
Wu B L, Wang D W, Poh E K. Decentralized sliding-mode control for attitude synchronization in spacecraft formation. International Journal of Robust and Nonlinear Control, 2013, 23(11):1183-1197
|
[126] |
Yang D P, Liu X D, Li Z K, Guo Y H. Distributed adaptive sliding mode control for attitude tracking of multiple spacecraft. In:Proceedings of the 32nd Chinese Control Conference. Xi'an, China:IEEE, 2013. 6917-6922
|
[127] |
Zhou Y R, Huo W. Quaternion-based direct adaptive fuzzy predictive control for attitude tracking of satellites. In:Proceedings of the 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. Shanghai China:IEEE, 2009. 510-516
|
[128] |
Guan P, Liu X H, Zhang W, Xue L. The direct adaptive fuzzy robust control for satellite attitude control. In:Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China:IEEE, 2012. 36-41
|
[129] |
Rumelhart D E, McClelland J L. Parallel Distributed Processing:Explorations in the Microstructure of Cognition, Vol. 1:Foundations. Cambridge, MA:MIT Press, 1986. 318-362
|
[130] |
Lee T T, Jeng J T. The Chebyshev-polynomials-based unified model neural networks for function approximation. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 1998, 28(6):925-935
|
[131] |
Hou Z G, Cheng L, Tan M. Decentralized robust adaptive control for the multiagent system consensus problem using Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2009, 39(3):636-647
|
[132] |
Cheng L, Hou Z G, Tan M, Lin Y Z, Zhang W J. Neural-networkbased adaptive leader-following control for multiagent systems with uncertainties. IEEE Transactions on Neural Networks, 2010, 21(8):1351-1358
|
[133] |
Zou A M, Kumar K D, Hou Z G. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks. IEEE Transactions on Neural Networks, 2010, 21(9):1457-1471
|
[134] |
Zou A M. Distributed attitude synchronization and tracking control for multiple rigid bodies. IEEE Transactions on Control Systems Technology, 2014, 22(2):478-490
|
[135] |
Zou A M, Kumar K D. Quaternion-based distributed output feedback attitude coordination control for spacecraft formation flying. Journal of Guidance, Control, and Dynamics, 2013, 36(2):548-556
|
[136] |
Ball R S. A Treatise on the Theory of Screws. Cambridge:Cambridge University Press, 1900.
|
[137] |
Funda J, Taylor R H, Paul R P. On homogeneous transforms, quaternions, and computational efficiency. IEEE Transactions on Robotics and Automation, 1990, 6(3):382-388
|
[138] |
Yang A T. Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms[Ph. D. dissertation], Columbia University, New York, USA, 1963.
|
[139] |
Aspragathos N A, Dimitros J K. A comparative study of three methods for robot kinematics. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 1998, 28(2):135-145
|
[140] |
Dooley J R, McCarthy J M. Spatial rigid body dynamics using dual quaternion components. In:Proceedings of the 1991 IEEE International Conference on Robotics and Automation. Sacramento, California:IEEE, 1991. 90-95
|
[141] |
Zhang F, Duan G R. Robust integrated translation and rotation finitetime maneuver of a rigid spacecraft based on dual quaternion. In:Proceedings of the 2011 AIAA Guidance, Navigation, and Control Conference. Portland, Oregon:the 2011 AIAA, 2011. 1-17
|
[142] |
Wu J J, Liu K, Han D P. Adaptive sliding mode control for six-DOF relative motion of spacecraft with input constraint. Acta Astronautica, 2013, 87:64-76
|
[143] |
Wang X K, Yu C B, Lin Z Y. A dual quaternion solution to attitude and position control for rigid-body coordination. IEEE Transactions on Robotics, 2012, 28(5):1162-1170
|
[144] |
Sarlette A, Sepulchre R, Leonard N E. Cooperative attitude synchronization in satellite swarms:a consensus approach. In:Proceedings of the 17th IFAC Symposium on Automatic Control Aerospace. Toulouse, France:IFAC, 2007. 223-228
|
[145] |
Igarashi Y, Hatanaka T, Fujita M, Spong M W. Passivity-based attitude synchronization in SE(3). IEEE Transactions on Control Systems Technology, 2009, 17(5):1119-1134
|
[146] |
Chang I, Park S Y, Choi K H. Decentralized coordinated attitude control for satellite formation flying via the state-dependent Riccati equation technique. International Journal of Non-Linear Mechanics, 2009, 44(8):891-904
|
[147] |
Jung J, Park S Y, Kim S W, Eun Y H, Chang Y K. Hardware-in-theloop simulations of spacecraft attitude synchronization using the State- Dependent Riccati Equation technique. Advances in Space Research, 2013, 51(3):434-449
|
[148] |
Felicetti L, Palmerini G B. Coordinated attitude control for multiple heterogeneous satellites missions. In:Proceedings of the 2011 AIAA/AAS Astrodynamics Specialist Conference. Minneapolis, Minnesota:AIAA, 2012. 1-19
|
[149] |
Min H B, Wang S C, Sun F C, Gao Z J, Zhang J S. Decentralized adaptive attitude synchronization of spacecraft formation. Systems and Control Letters, 2012, 61(1):238-246
|
[150] |
Mayhew C G, Sanfelice R G, Sheng J, Arcak M, Teel A R. Quaternionbased hybrid feedback for robust global attitude synchronization. IEEE Transactions on Automatic Control, 2012, 57(8):2122-2127
|
[151] |
Sarlette A, Lageman C. Synchronization with partial state coupling on SO(n). SIAM Journal on Control and Optimization, 2012, 50(6):3242-3268
|
[152] |
Mayhew C G, Sanfelice R G, Teel A R. On path-lifting mechanisms and unwinding in quaternion-based attitude control. IEEE Transactions on Automatic Control, 2013, 58(5):1179-1191
|
[153] |
Zhang K W, Demetriou M A. Attitude synchronization of spacecraft formation with adaptation of consensus penalty terms. In:Proceedings of the 2013 European Control Conference. Zürich, Switzerland:EUCA, 2013. 3833-3838
|
[154] |
Zheng Z, Song S M. Attitude coordination control of spacecraft formation flying using rotation matrix. In:Proceedings of the 32nd Chinese Control Conference. Xi'an, China:IEEE, 2013. 6891-6895
|
[155] |
Huang M Y, Manton J H. Coordination and consensus of networked agents with noisy measurement:Stochastic algorithms and asymptotic behavior. SIAM Journal on Control and Optimization, 2009, 48(1):134-161
|
[156] |
Kar S, Moura J M F. Distributed consensus algorithms in sensor networks with imperfect communication:link failures and channel noise. IEEE Transactions on Signal Processing, 2009, 57(1):355-369
|
[157] |
Li T, Zhang J F. Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises. IEEE Transactions on Automatic Control, 2010, 55(9):2043-2057
|
[158] |
Li T, Zhang J F. Mean square average-consensus under measurement noises and fixed topologies:necessary and sufficient conditions. Automatica, 2009, 45(8):1929-1936
|
[159] |
Cheng L, Hou Z G, Tan M. A mean square consensus protocol for linear multi-agent systems with communication noises and fixed topologies. IEEE Transactions on Automatic Control, 2014, 59(1):261-267
|
[160] |
Wang J, Elia N. Distributed averaging under constraints on information exchange:emergence of Lévy flights. IEEE Transactions on Automatic Control, 2012, 57(10):2435-2449
|
[161] |
Wang J, Elia N. Mitigation of complex behavior over networked systems:analysis of spatially invariant structures. Automatica, 2013, 49(6):1626-1638
|
[162] |
Aysal T C, Barner K E. Convergence of consensus models with stochastic disturbances. IEEE Transactions on Information Theory, 2010, 56(8):4101-4113
|
[163] |
Medvedev G S. Stochastic stability of continuous time consensus protocols. SIAM Journal on Control and Optimization, 2012, 50(4):1859-1885
|