Citation: | X. Wang, D. Yu, and X. Li, “Impulsive consensus of MASs with input saturation and DoS attacks,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–11, Feb. 2025. |
[1] |
S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D. Hatziargyriou, F. Ponci, and T. Funabashi, “Multi-agent systems for power engineering applications—Part I: Concepts, approaches, and technical challenges,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 1743–1752, 2007. doi: 10.1109/TPWRS.2007.908471
|
[2] |
Z. Zuo, C. Liu, Q.-L. Han, and J. Song, “Unmanned aerial vehicles: Control methods and future challenges,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 601–614, 2022. doi: 10.1109/JAS.2022.105410
|
[3] |
C. Liu, B. Jiang, X. Wang, H. Yang, and S. Xie, “Distributed faulttolerant consensus tracking of multi-agent systems under cyber-attacks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1037–1048, 2022. doi: 10.1109/JAS.2022.105419
|
[4] |
M. S. Mahmoud and G. D. Khan, “LMI consensus condition for discretetime multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 509–513, 2018. doi: 10.1109/JAS.2016.7510016
|
[5] |
H. Du, G. Wen, D. Wu, Y. Cheng, and J. Lv, “Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems,” Automatica, vol. 113, p. 108797, 2020. doi: 10.1016/j.automatica.2019.108797
|
[6] |
A. Amirkhani and A. H. Barshooi, “Consensus in multi-agent systems: A review,” Artificial Intelligence Review, vol. 55, no. 5, pp. 3897–3935, Nov. 2021.
|
[7] |
J. Farwell and R. Rohozinski, “Stuxnet and the future of cyber war,” Survival, vol. 53, pp. 23–40, 2011.
|
[8] |
E. Iasiello, “Cyber attack: A dull tool to shape foreign policy,” in Proc. 5th Int. Conf. Cyber Conflict, 2013, pp. 1–18.
|
[9] |
J. Slay and M. Miller, “Lessons learned from the Maroochy water breach,” Critical Infrastructure Protection, E. Goetz and S. Shenoi, Eds. Boston, MA: Springer US, 2008, pp. 73–82.
|
[10] |
A.-Y. Lu and G.-H. Yang, “Distributed consensus control for multi-agent systems under denial-of-service,” Information Sciences, vol. 439–440, pp. 95–107, 2018. doi: 10.1016/j.ins.2018.02.008
|
[11] |
J. Liu, T. Yin, D. Yue, H. R. Karimi, and J. Cao, “Event-based secure leader-following consensus control for multiagent systems with multiple cyber attacks,” IEEE Trans. Cybernetics, vol. 51, no. 1, pp. 162–173, 2021. doi: 10.1109/TCYB.2020.2970556
|
[12] |
L. An and G.-H. Yang, “Distributed secure state estimation for cyber-physical systems under sensor attacks,” Automatica, vol. 107, pp. 526–538, 2019. doi: 10.1016/j.automatica.2019.06.019
|
[13] |
G. Chen, G. Du, J. Xia, X. Xie, and Z. Wang, “Aperiodic sampled-data h∞ control of vehicle active suspension system: An uncertain discretetime model approach,” IEEE Trans. Industrial Informatics, vol. 20, no. 4, pp. 6739–6750, 2024. doi: 10.1109/TII.2024.3353856
|
[14] |
G. Narayanan, M. S. Ali, H. Alsulami, G. Stamov, I. Stamova, and B. Ahmad, “Impulsive security control for fractional-order delayed multi-agent systems with uncertain parameters and switching topology under DoS attack,” Information Sciences, vol. 618, pp. 169–190, 2022. doi: 10.1016/j.ins.2022.10.123
|
[15] |
G. Chen, J. Xia, J. H. Park, H. Shen, and G. Zhuang, “Sampleddata synchronization of stochastic markovian jump neural networks with time-varying delay,” IEEE Trans. Neural Networks and Learning Systems, vol. 33, no. 8, pp. 3829–3841, 2022. doi: 10.1109/TNNLS.2021.3054615
|
[16] |
L. Feng, W. Zhang, and Z. Wu, “Stabilization of random nonlinear systems subject to deception attacks,” Int. J. Robust and Nonlinear Control, vol. 32, no. 4, pp. 2233–2250, 2022. doi: 10.1002/rnc.5944
|
[17] |
W. He, Z. Mo, Q.-L. Han, and F. Qian, “Secure impulsive synchronization in lipschitz-type multi-agent systems subject to deception attacks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1326–1334, 2020. doi: 10.1109/JAS.2020.1003297
|
[18] |
J. Zhang, D. Yang, H. Zhang, and H. Su, “Adaptive secure practical fault-tolerant output regulation of multiagent systems with DoS attacks by asynchronous communications,” IEEE Trans. Network Science and Engineering, vol. 10, no. 6, pp. 4046–4055, 2023.
|
[19] |
D. Lin, W. Lan, and M. Li, “Composite nonlinear feedback control for linear singular systems with input saturation,” Systems and Control Letters, vol. 60, no. 10, pp. 825–831, 2011.
|
[20] |
Y.-F. Gao, X.-M. Sun, C. Wen, and W. Wang, “Adaptive tracking control for a class of stochastic uncertain nonlinear systems with input saturation,” IEEE Trans. Autom. Control, vol. 62, no. 5, pp. 2498–2504, 2017. doi: 10.1109/TAC.2016.2600340
|
[21] |
W. Lin, “Input saturation and global stabilization of nonlinear systems via state and output feedback,” IEEE Trans. Autom. Control, vol. 40, no. 4, pp. 776–782, 1995. doi: 10.1109/9.376089
|
[22] |
Z. Yang, S. Li, D. Yu, and C. P. Chen, “Bls-based formation control for nonlinear multi-agent systems with actuator fault and input saturation,” Nonlinear Dynamics, vol. 109, no. 4, pp. 2657–2673, 2022. doi: 10.1007/s11071-022-07505-4
|
[23] |
L. Zhang, W.-W. Che, C. Deng, and Z.-G. Wu, “Prescribed performance fuzzy resilient control for nonlinear systems under DoS attacks,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 53, no. 5, pp. 3104–3116, 2023. doi: 10.1109/TSMC.2022.3221371
|
[24] |
X. Li and C. Zhu, “Saturated impulsive control of nonlinear systems with applications,” Automatica, vol. 142, p. 110375, 2022. doi: 10.1016/j.automatica.2022.110375
|
[25] |
T. Yang, Z. Meng, D. V. Dimarogonas, and K. H. Johansson, “Global consensus for discrete-time multi-agent systems with input saturation constraints,” Automatica, vol. 50, no. 2, pp. 499–506, 2014. doi: 10.1016/j.automatica.2013.11.008
|
[26] |
X. Guo, Q. Li, L. Ji, and J. Wang, “Secured impulsive control for directed networks under denial-of-service attacks,” Systems and Control Letters, vol. 173, p. 105463, 2023.
|
[27] |
C.-C. Hua, X. You, and X.-P. Guan, “Leader-following consensus for a class of high-order nonlinear multi-agent systems,” Automatica, vol. 73, pp. 138–144, 2016. doi: 10.1016/j.automatica.2016.06.025
|
[28] |
M. Meng, G. Xiao, and B. Li, “Adaptive consensus for heterogeneous multi-agent systems under sensor and actuator attacks,” Automatica, vol. 122, p. 109242, 2020. doi: 10.1016/j.automatica.2020.109242
|
[29] |
T. Hu, Z. Lin, and B. M. Chen, “An analysis and design method for linear systems subject to actuator saturation and disturbance,” Automatica, vol. 38, no. 2, pp. 351–359, 2002. doi: 10.1016/S0005-1098(01)00209-6
|
[30] |
G. Chen, C. Fan, J. Sun, and J. Xia, “Mean square exponential stability analysis for Itô stochastic systems with aperiodic sampling and multiple time-delays,” IEEE Trans. Autom. Control, vol. 67, no. 5, pp. 2473–2480, 2022. doi: 10.1109/TAC.2021.3074848
|
[31] |
G. Chen, J. Xia, J. H. Park, H. Shen, and G. Zhuang, “Robust sampleddata control for switched complex dynamical networks with actuators saturation,” IEEE Trans. Cybernetics, vol. 52, no. 10, pp. 10909–10923, 2022. doi: 10.1109/TCYB.2021.3069813
|