A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 1 Issue 2
Apr.  2014

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Hongjing Liang, Huaguang Zhang, Zhanshan Wang and Junyi Wang, "Consensus Robust Output Regulation of Discrete-time Linear Multi-agent Systems," IEEE/CAA J. of Autom. Sinica, vol. 1, no. 2, pp. 204-209, 2014.
Citation: Hongjing Liang, Huaguang Zhang, Zhanshan Wang and Junyi Wang, "Consensus Robust Output Regulation of Discrete-time Linear Multi-agent Systems," IEEE/CAA J. of Autom. Sinica, vol. 1, no. 2, pp. 204-209, 2014.

Consensus Robust Output Regulation of Discrete-time Linear Multi-agent Systems

Funds:

This work was supported by National Basic Research Program of China (973 Program) (2009CB320601), National High Technology Research and Development Program of China (863 Program) (2012AA040104), and National Natural Science Foundation of China (50977008, 61034005, 61273027).

  • This paper deals with consensus robust output regulation of discrete-time linear multi-agent systems under a directed interaction topology. The digraph is assumed to contain a spanning tree. Every agent or subsystem is identical and uncertain, but subsystems have different external disturbances. Based on the internal model and general discrete-time algebraic Riccati equation, a distributed consensus protocol is proposed to solve the regulator problem. A numerical simulation demonstrates the effectiveness of the proposed theoretical results.

     

  • loading
  • [1]
    Jadbabaie A, Lin J, Morse A. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6):988-1001
    [2]
    Hong Y G, Gao L X, Cheng D Z, Hu J P. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Transactions on Automatic Control, 2007, 52(5):943-948
    [3]
    Fax J A, Murray M R. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9):1465-1476
    [4]
    Ren W, Beard R W. Decentralized scheme for spacecraft formation flying via the virtual structure approach. Journal of Guidance, Control, Dynamics, 2004, 27(1):73-82
    [5]
    Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533
    [6]
    Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1):215-223
    [7]
    Hengster-Movric K, You K Y, Lewis F L, Xie L H. Synchronization of discrete-time multi-agent systems on graphs using Riccati design. Automatica, 2013, 49(2):414-423
    [8]
    Yang H, Jiang B, Cocquempot V, Zhang H G. Stabilization of switched nonlinear systems with all unstable modes:applications to multiagent systems. IEEE Transactions on Automatic Control, 2011, 56(9):2230-2235
    [9]
    Yang H, Jiang B, Zhang H G. Stabilization of non-minimum phase switched nonlinear systems with application to multi-agent systems. Systems and Control Letters, 2012, 61(10):1023-1031
    [10]
    Hong Y G, Wang X L. Multi-agent tracking of a high-dimensional active leader with switching topology. Journal of Systems Science and Complexity, 2009, 22(4):722-731
    [11]
    Huang Q Z. Consensus analysis of multi-agent discrete-time systems. Acta Automatica Sinica, 2012, 38(7):1127-1133
    [12]
    Yan J, Guan X P, Luo X Y, Yang X. Consensus and trajectory planning with input constraints for multi-agent systems. Acta Automatica Sinica, 2012, 38(7):1074-1082
    [13]
    Wang Y C, Zhang H G, Wang X Y, Yang D S. Networked synchronization control of coupled dynamic networks with time-varying delay. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2010, 40(6):1468-1479
    [14]
    Fu J, Zhang H G, Ma T D, Zhang Q L. On passivity analysis for stochastic neural networks with interval time-varying delay. Neurocomputing, 2010, 73(4-6):795-801
    [15]
    Zhang H G, Liu D R, Luo Y H, Wang D. Adaptive Dynamic Programming for Control-Algorithms and Stability. London:Springer-Verlag, 2013
    [16]
    Hong Y G, Hu J P, Gao L X. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica, 2006, 42(7):1177-1182
    [17]
    Wang X L, Ni W, Wang X S. Leader-following formation of switching multirobot systems via internal model. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2012, 42(3):817-826
    [18]
    Hong Y G, Wang X L, Jiang Z P. Distributed output regulation of leader-follower multi-agent systems. International Journal of Robust and Nonlinear Control, 23(1):48-66
    [19]
    Liu S C, Tan D L, Liu G J. Robust leader-follower formation control of mobile robots based on a second order kinematics model. Acta Automatica Sinica, 2007, 33(9):947-955
    [20]
    Francis B A. The linear multivariable regulator problem. SIAM Journal on Control and Optimization, 1977, 15(3):486-505
    [21]
    Isidori A, Byrnes C I. Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 1990, 35(2):131-140
    [22]
    Li R R, Khalil H. Nonlinear output regulation with adaptive conditional servocompensator. Automatica, 2012, 48(10):2550-2559
    [23]
    Xiang J, Wei W, Li Y J. Synchronized output regulation of networked linear systems. IEEE Transactions on Automatic Control, 2009, 54(6):1336-1341
    [24]
    Wang X L, Hong Y G, Huang J, Jiang Z P. A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Transactions on Automatic Control, 2010, 55(12):2891-2895
    [25]
    Wang X L, Han F. Robust coordination control of switching multiagent systems via output regulation approach. Kybernetika, 2011, 47(5):755-772
    [26]
    Wieland P, Sepulchre R, Allgõwer F. An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 2011, 47(5):1068-1074
    [27]
    Su Y F, Hong Y G, Huang J. A general result on the robust cooperative output regulation for linear uncertain multi-agent systems. IEEE Transactions on Automatic Control, 2013, 58(5):1275-1279
    [28]
    Su Y F, Huang J. Cooperative output regulation of linear multiagent systems. IEEE Transactions on Automatic Control, 2012, 57(4):1062-1066
    [29]
    Su Y F, Huang J. Cooperative output regulation with application to multi-agent consensus under switching network. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2012, 42(3):864-875
    [30]
    Horn R A, Johnson C R. Matrix Analysis. Cambridge, UK:Cambridge University Press, 1987
    [31]
    Godsil C, Royle G. Algebraic Graph Theory. New York:Springer-Verlag, 2001
    [32]
    Li Z K, Duan Z S, Chen G R, Huang L. Consensus of multiagent systems and synchronization of complex networks:a unified viewpoint. IEEE Transactions on Circuits and Systems I:Regular Papers, 2010, 57(1):213-224
    [33]
    Huang J. Nonlinear Output Regulation:Theory and Applications. Phildelphia, PA:SIAM, 2004
    [34]
    You K Y, Xie L H. Network topology and communication data rate for consensusability of discrete-time multi-agent systems. IEEE Transactions on Automatic Control, 2011, 56(10):2262-2275

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1268) PDF downloads(28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return