IEEE/CAA Journal of Automatica Sinica
Citation: | Jing Na and Guido Herrmann, "Online Adaptive Approximate Optimal Tracking Control with Simplified Dual Approximation Structure for Continuous-time Unknown Nonlinear Systems," IEEE/CAA J. of Autom. Sinica, vol. 1, no. 4, pp. 412-422, 2014. |
[1] |
Lewis F L, Vrabie D, Syrmos V L. Optimal Control. Wiley. com, 2012.
|
[2] |
Vrabie D, Lewis F L. Neural network approach to continuous-time directadaptive optimal control for partially unknown nonlinear systems. NeuralNetworks, 2009, 22(3): 237-246
|
[3] |
Sastry S, Bodson M. Adaptive Control: Stability, Convergence, andRobustness. New Jersey: Prentice Hall, 1989.
|
[4] |
Ioannou P A, Sun J. Robust Adaptive Control. New Jersey: PrenticeHall, 1996.
|
[5] |
Sutton R S, Barto A G. Reinforcement Learning: An Introduction.Cambridge: Cambridge University Press, 1998.
|
[6] |
Doya K J. Reinforcement learning in continuous time and space. Neuralcomputation, 2000, 12(1): 219-245
|
[7] |
Sutton R S, Barto A G, Williams R J. Reinforcement learning is directadaptive optimal control. IEEE Control Systems Magazine, 1992, 12(2):19-22
|
[8] |
Werbos P J. A menu of designs for reinforcement learning over time.Neural Networks for Control. MA, USA: MIT Press Cambridge, 1990.67-95
|
[9] |
Si J, Barto A G, Powell W B, Wunsch D C. Handbook of Learning andApproximate Dynamic Programming. Los Alamitos: IEEE Press, 2004.
|
[10] |
Wang F Y, Zhang H G, Liu D R. Adaptive dynamic programming:an introduction. IEEE Computational Intelligence Magazine, 2009, 4(2):39-47
|
[11] |
Lewis F L, Vrabie D. Reinforcement learning and adaptive dynamic programmingfor feedback control. IEEE Circuits and Systems Magazine,2009 9(3): 32-50
|
[12] |
Zhang H G, Zhang X, Luo Y H, Yang J. An overview of research onadaptive dynamic programming. Acata Automatica Sinica, 2013, 39(4):303-311
|
[13] |
Dierks T, Thumati B T, Jagannathan S. Optimal control of unknownaffine nonlinear discrete-time systems using offline-trained neural networkswith proof of convergence. Neural Networks, 2009, 22(5):851-860
|
[14] |
Al-Tamimi A, Lewis F L, Abu-Khalaf M. Discrete-time nonlinearHJB solution using approximate dynamic programming: convergenceproof. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2008, 38(4): 943-949
|
[15] |
Wang D, Liu D R, Wei Q L, Zhao D B, Jin N. Optimal control ofunknown nonaffine nonlinear discrete-time systems based on adaptivedynamic programming. Automatica, 2012, 48(8): 1825-1832
|
[16] |
Hanselmann T, Noakes L, Zaknich A. Continuous-time adaptive critics.IEEE Transactions on Neural Networks, 2007, 18(3): 631-647
|
[17] |
Abu-Khalaf M, Lewis F L. Nearly optimal control laws for nonlinearsystems with saturating actuators using a neural network HJB approach.Automatica, 2005, 41(5): 779-791
|
[18] |
Vrabie D, Pastravanu O, Abu-Khalaf M, Lewis F L. Adaptive optimalcontrol for continuous-time linear systems based on policy iteration.Automatica, 2009, 45(2): 477-484
|
[19] |
Vamvoudakis K G, Lewis F L. Online actor-critic algorithm to solve thecontinuous-time infinite horizon optimal control problem. Automatica,2010, 46(5): 878-888
|
[20] |
Bhasin S, Kamalapurkar R, Johnson M, Vamvoudakis K G, Lewis F L,Dixon W E. A novel actor-critic-identifier architecture for approximateoptimal control of uncertain nonlinear systems. Automatica, 2013, 49(1):82-92
|
[21] |
Zhang H G, Cui L, Zhang X, Luo Y. Data-driven robust approximateoptimal tracking control for unknown general nonlinear systems usingadaptive dynamic programming method. IEEE Transactions on NeuralNetworks, 2011, 22(12): 2226-2236
|
[22] |
Mannava A, Balakrishnan S N, Tang L, Landers R G. Optimal trackingcontrol of motion systems. IEEE Transactions on Control SystemsTechnology, 2012, 20(6): 1548-1558
|
[23] |
Nodland D, Zargarzadeh H, Jagannathan S. Neural network-basedoptimal adaptive output feedback control of a helicopter UAV. IEEETransactions on Neural Networks and Learning Systems, 2013, 24(7):1061-1073
|
[24] |
Na J, Herrmann G, Ren X M, Mahyuddin M N, Barber P. Robust adaptivefinite-time parameter estimation and control of nonlinear systems.In: Proceedings of IEEE International Symposium on Intelligent Control(ISIC). Denver, CO: IEEE, 2011. 1014-1019
|
[25] |
Uang H J, Chen B S. Robust adaptive optimal tracking design foruncertain missile systems: a fuzzy approach. Fuzzy Sets and Systems,2002, 126(1): 63-87
|
[26] |
Krstic M, Kokotovic P V, Kanellakopoulos I. Nonlinear and AdaptiveControl Design. New York: Wiley, 1995.
|
[27] |
Kosmatopoulos E B, Polycarpou M M, Christodoulou M A, Ioannou PA. High-order neural network structures for identification of dynamicalsystems. IEEE Transactions on Neural Networks, 1995, 6(2): 422-431
|
[28] |
Abdollahi F, Talebi H A, Patel R V. A stable neural network-based observerwith application to flexible-joint manipulators. IEEE Transactionson Neural Networks, 2006, 17(1): 118-129
|
[29] |
Lin J S, Kanellakopoulos I. Nonlinearities enhance parameter convergencein strict feedback systems. IEEE Transactions on AutomaticControl, 1999, 44(1): 89-94
|
[30] |
Edwards C, Spurgeon S K. Sliding Mode Control: Theory and Applications.Boca Raton: CRC Press, 1998.
|
[31] |
Sira-Ramirez H. Differential geometric methods in variable-structurecontrol. International Journal of Control, 1988, 48 (4): 1359-1390
|
[32] |
Nevistic V, Primbs J A. Constrained Nonlinear Optimal Control: AConverse HJB Approach, Technical Report CIT-CDS 96-021, CaliforniaInstitute of Technology, Pasadena, CA, 1996.
|