IEEE/CAA Journal of Automatica Sinica
Citation: | Xiaojuan Chen, Jun Zhang and Tiedong Ma, "Parameter Estimation and Topology Identification of Uncertain General Fractional-order Complex Dynamical Networks with Time Delay," IEEE/CAA J. of Autom. Sinica, vol. 3, no. 3, pp. 295-303, 2016. |
[1] |
Strogatz S H. Exploring complex networks. Nature, 2001, 410(6825): 268-276
|
[2] |
Wang X F, Chen G R. Complex networks: small-world, scale-free and beyond. IEEE Circuits and Systems Magazine, 2003, 3(1): 6-20
|
[3] |
Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. Complex networks: structure and dynamics. Physics Reports, 2006, 424(4-5): 175-308
|
[4] |
Albert R, Barabási A L. Statistical mechanics of complex networks. Reviews of Modern Physics, 2002, 74(1): 47-97
|
[5] |
Chen G R, Dong X N. From Chaos to Order: Methodologies, Perspectives and Applications. Singapore: World Scientific, 1998.
|
[6] |
Xie Q X, Chen G R, Bollt E M. Hybrid chaos synchronization and its application in information processing. Mathematical and Computer Modelling, 2002, 35(1-2): 145-163
|
[7] |
Li X, Wang X F, Chen G R. Pinning a complex dynamical network to its equilibrium. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(10): 2074-2087
|
[8] |
Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C S. Synchronization in complex networks. Physics Reports, 2008, 469(3): 93-153
|
[9] |
Wu X J, Lu H T. Hybrid synchronization of the general delayed and non-delayed complex dynamical networks via pinning control. Neurocomputing, 2012, 89: 168-177
|
[10] |
Lu J Q, Cao J D. adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. Chaos, 2005, 15(4): 043901
|
[11] |
Yu D C, Righero M, Kocarev L. Estimating topology of networks. Physical Review Letters, 2006, 97(18): 188701
|
[12] |
Wu X Q. Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay. Physica A: Statistical Mechanics and Its Applications, 2008, 387(4): 997-1008
|
[13] |
Zhou J, Lu J A. Topology identification of weighted complex dynamical networks. Physica A: Statistical Mechanics and Its Applications, 2007, 386(1): 481-491
|
[14] |
Liu H, Lu J A, Lü J H, Hill D J. Structure identification of uncertain general complex dynamical networks with time delay. Automatica, 2009, 45(8): 1799-1807
|
[15] |
Nagih A, Plateau G. Problémes fractionnaires: tour d'horizon sur les applications et méthodes de résolution. RAIRO-Operations Research, 1999, 33(4): 383-419
|
[16] |
Koeller R C. Applications of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics, 1984, 51(2): 299-307
|
[17] |
Heaviside O. Electromagnetic Theory. New York: Chelsea, 1971.
|
[18] |
Podlubny I. Fractional Differential Equations. San Diego: Academic Press, 1999.
|
[19] |
Hartley T T, Lorenzo C F, Qammer H K. Chaos in a fractional order Chua's system. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1995, 42(8): 485-490
|
[20] |
Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 2003, 91(3): 034101
|
[21] |
Li C G, Chen G R. Chaos and hyperchaos in the fractional-order R¨ossler equations. Physica A: Statistical Mechanics and Its Applications, 2004, 341: 55-61
|
[22] |
Chai Y, Chen L P, Wu R C, Sun J. Adaptive pinning synchronization in fractional-order complex dynamical networks. Physica A: Statistical Mechanics and Its Applications, 2012, 391(22): 5746-5758
|
[23] |
Chen L P, Chai Y, Wu R C, Sun J, Ma T D. Cluster synchronization in fractional-order complex dynamical networks. Physics Letters A, 2012, 376(35): 2381-2388
|
[24] |
Yang L X, He W S, Zhang F D, Jia J P. Cluster projective synchronization of fractional-order complex network via pinning control. Abstract and Applied Analysis, 2014, 2014: Article ID 314742
|
[25] |
Wang G S, Xiao J W, Wang Y W, Yi J W. Adaptive pinning cluster synchronization of fractional-order complex dynamical networks. Applied Mathematics and Computation, 2014, 231: 347-356
|
[26] |
Wu X J, Lu H T. Outer synchronization between two different fractionalorder general complex dynamical networks. Chinese Physics B, 2010, 19(7): 070511
|
[27] |
Si G Q, Sun Z Y, Zhang H Y, Zhang Y B. Parameter estimation and topology identification of uncertain fractional order complex networks. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12): 5158-5171
|
[28] |
Yang L X, Jiang J. Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(5): 1496-1506
|
[29] |
Ma W Y, Li C P, Wu Y J, Wu Y Q. Adaptive synchronization of fractional neural networks with unknown parameters and time delays. Entropy, 2014, 16(12): 6286-6299
|
[30] |
Hu J B, Lu G P, Zhang S B, Zhang L D. Lyapunov stability theorem about fractional system without and with delay. Communications in Nonlinear Science and Numerical Simulation, 2015, 20(3): 905-913
|