Citation: | J. Lin, C. He, Y. Tian, and L. Pan, “Variable reconstruction for evolutionary expensive large-scale multiobjective optimization and its application on aerodynamic design,” IEEE/CAA J. Autom. Sinica, 2024. |
[1] |
J. Liu, Y. Wang, G. Sun, and T. Pang, “Multisurrogate-assisted ant colony optimization for expensive optimization problems with continuous and categorical variables,” IEEE Trans. Cybern., vol. 52, pp. 11348–11361, 2021.
|
[2] |
W. Wang, H.-L. Liu, and K. C. Tan, “A surrogate-assisted differential evolution algorithm for high-dimensional expensive optimization problems,” IEEE Trans. Cybern., vol. 53, no. 4, pp. 2685–2697, 2022.
|
[3] |
B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary computation approaches to feature selection,” IEEE Trans. Evol. Comput., vol. 20, no. 4, pp. 606–626, 2015.
|
[4] |
X. Wang, T. Hu, and L. Tang, “A multiobjective evolutionary nonlinear ensemble learning with evolutionary feature selection for silicon prediction in blast furnace,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 5, pp. 2080–2093, 2021.
|
[5] |
C. He, L. Li, Y. Tian, X. Zhang, R. Cheng, Y. Jin, and X. Yao, “Accelerating large-scale multiobjective optimization via problem reformulation,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 949–961, 2019. doi: 10.1109/TEVC.2019.2896002
|
[6] |
Z. Song, H. Wang, C. He, and Y. Jin, “A Kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization,” IEEE Trans. Evol. Comput., vol. 25, no. 6, pp. 1013–1027, 2021. doi: 10.1109/TEVC.2021.3073648
|
[7] |
T. Akhtar and C. A. Shoemaker, “Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection,” J. Glob. Optim., vol. 64, pp. 17–32, 2016. doi: 10.1007/s10898-015-0270-y
|
[8] |
V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.
|
[9] |
W. S. Noble, “What is a support vector machine?” Nat. Biotechnol., vol. 24, no. 12, pp. 1565–1567, 2006. doi: 10.1038/nbt1206-1565
|
[10] |
X. Wang, Z. Dong, L. Tang, and Q. Zhang, “Multiobjective multitask optimization-neighborhood as a bridge for knowledge transfer,” IEEE Trans. Evol. Comput., vol. 27, no. 1, pp. 155–169, 2022.
|
[11] |
Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, 2007.
|
[12] |
Q. Zhang, W. Liu, E. Tsang, and B. Virginas, “Expensive multiobjective optimization by moea/d with Gaussian process model,” IEEE Trans. Evol. Comput., vol. 14, no. 3, pp. 456–474, 2009.
|
[13] |
T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, “A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 129–142, 2016.
|
[14] |
J. Zhang, A. Zhou, and G. Zhang, “A classification and pareto domination based multiobjective evolutionary algorithm,” in IEEE Congr. Evol. Comput. IEEE, 2015, pp. 2883–2890.
|
[15] |
L. Pan, C. He, Y. Tian, H. Wang, X. Zhang, and Y. Jin, “A classificationbased surrogate-assisted evolutionary algorithm for expensive manyobjective optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 1, pp. 74–88, 2019. doi: 10.1109/TEVC.2018.2802784
|
[16] |
M. Yu, J. Liang, Z. Wu, and Z. Yang, “A twofold infill criterion-driven heterogeneous ensemble surrogate-assisted evolutionary algorithm for computationally expensive problems,” Knowl. Based Syst., vol. 236, p. 107747, 2022.
|
[17] |
Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances and future challenges,” Swarm Evol. Comput., vol. 1, no. 2, pp. 61–70, 2011. doi: 10.1016/j.swevo.2011.05.001
|
[18] |
Y. Li, Y. Shen, J. Jiang, J. Gao, C. Zhang, and B. Cui, “Mfes-hb: Efficient hyperband with multi-fidelity quality measurements,” in Proc. AAAI Conf. Artif. Intell., vol. 35, no. 10, 2021, pp. 8491–8500.
|
[19] |
X. Ji, Y. Zhang, D. Gong, and X. Sun, “Dual-surrogate-assisted cooperative particle swarm optimization for expensive multimodal problems,” IEEE Trans. Evol. Comput., vol. 25, no. 4, pp. 794–808, 2021. doi: 10.1109/TEVC.2021.3064835
|
[20] |
X. Ji, Y. Zhang, D. Gong, X. Sun, and Y. Guo, “Multisurrogate-assisted multitasking particle swarm optimization for expensive multimodal problems,” IEEE Trans. Cybern., vol. 53, no. 4, pp. 2516–2530, 2021.
|
[21] |
Y. Zhang, X.-F. Ji, X.-Z. Gao, D.-W. Gong, and X.-Y. Sun, “Objectiveconstraint mutual-guided surrogate-based particle swarm optimization for expensive constrained multimodal problems,” IEEE Trans. Evol. Comput., vol. 27, no. 4, pp. 908–922, 2023.
|
[22] |
X.-F. Ji, Y. Zhang, C.-L. He, J.-X. Cheng, D.-W. Gong, X.-Z. Gao, and Y.-N. Guo, “Surrogate and autoencoder-assisted multitask particle swarm optimization for high-dimensional expensive multimodal problems,” IEEE Trans. Evol. Comput., vol. 28, no. 4, pp. 1009–1023, 2024. doi: 10.1109/TEVC.2023.3287213
|
[23] |
Y. Tian, L. Si, X. Zhang, R. Cheng, C. He, K. C. Tan, and Y. Jin, “Evolutionary large-scale multi-objective optimization: A survey,” ACM Comput. Surv., vol. 54, no. 8, pp. 1–34, 2021.
|
[24] |
C. Sun, J. Ding, J. Zeng, and Y. Jin, “A fitness approximation assisted competitive swarm optimizer for large scale expensive optimization problems,” Memet. Comput., vol. 10, pp. 123–134, 2018. doi: 10.1007/s12293-016-0199-9
|
[25] |
X. Wu, Q. Lin, J. Li, K. C. Tan, and V. C. M. Leung, “An ensemble surrogate-based coevolutionary algorithm for solving large-scale expensive optimization problems,” IEEE Trans. Cybern., vol. 53, no. 9, pp. 5854–5866, 2022.
|
[26] |
D. Guo, X. Wang, K. Gao, Y. Jin, J. Ding, and T. Chai, “Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network,” IEEE Trans. Syst. Man. Cybern. Syst., vol. 52, no. 4, pp. 2084–2097, 2021.
|
[27] |
J. Lin, C. He, and R. Cheng, “Adaptive dropout for high-dimensional expensive multiobjective optimization,” Complex Intell. Syst., vol. 8, no. 1, pp. 271–285, 2022. doi: 10.1007/s40747-021-00362-5
|
[28] |
T. Sonoda and M. Nakata, “Multiple classifiers-assisted evolutionary algorithm based on decomposition for high-dimensional multiobjective problems,” IEEE Trans. Evol. Comput., vol. 26, no. 6, pp. 1581–1595, 2022. doi: 10.1109/TEVC.2022.3159000
|
[29] |
H. Li, J. Lin, Q. Chen, C. He, and L. Pan, “Supervised reconstruction for high-dimensional expensive multiobjective optimization,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 8, no. 2, pp. 1814–1827, 2024. doi: 10.1109/TETCI.2024.3358377
|
[30] |
M. D. Buhmann, “Radial basis functions,” Acta Numer., vol. 9, pp. 1–38, 2000. doi: 10.1017/S0962492900000015
|
[31] |
S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi, “Kernel methods on riemannian manifolds with Gaussian RBF kernels,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 12, pp. 2464–2477, 2015. doi: 10.1109/TPAMI.2015.2414422
|
[32] |
J. P. Kleijnen, “Kriging metamodeling in simulation: A review,” Eur. J. Oper. Res., vol. 192, no. 3, pp. 707–716, 2009.
|
[33] |
A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,” Pattern Recognit., vol. 36, no. 2, pp. 451–461, 2003. doi: 10.1016/S0031-3203(02)00060-2
|
[34] |
T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, “A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 129–142, 2018. doi: 10.1109/TEVC.2016.2622301
|
[35] |
Q. Zhang, A. Zhou, and Y. Jin, “Rm-meda: A regularity model-based multiobjective estimation of distribution algorithm,” IEEE Trans. Evol. Comput., vol. 12, no. 1, pp. 41–63, 2008. doi: 10.1109/TEVC.2007.894202
|
[36] |
K. Miettinen, Nonlinear Multiobjective Optimization. Springer Science and Business Media, 2012, vol. 12.
|
[37] |
G. Gordon and R. Tibshirani, “Karush-Kuhn-Tkucker conditions,” Optimization, vol. 10, no. 725/36, p. 725, 2012.
|
[38] |
H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “A framework for large-scale multiobjective optimization based on problem transformation,” IEEE Trans. Evol. Comput., vol. 22, no. 2, pp. 260–275, 2017.
|
[39] |
H. Gu, H. Wang, and Y. Jin, “Effects of pareto set on the performance of problem reformulation-based large-scale multiobjective optimization algorithms,” in Proc. IEEE Congr. Evol. Comput. IEEE, 2023, pp. 1–8.
|
[40] |
K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multiobjective optimization test problems,” in Proc. IEEE Congr. Evol. Comput., vol. 1. IEEE, 2002, pp. 825–830.
|
[41] |
S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiobjective test problems and a scalable test problem toolkit,” IEEE Trans. Evol. Comput., vol. 10, no. 5, pp. 477–506, 2006. doi: 10.1109/TEVC.2005.861417
|
[42] |
Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “Platemo: A matlab platform for evolutionary multi-objective optimization [educational forum],” IEEE Computational Intelligence Magazine, vol. 12, no. 4, pp. 73–87, 2017. doi: 10.1109/MCI.2017.2742868
|
[43] |
Y. Wang, J. Lin, J. Liu, G. Sun, and T. Pang, “Surrogate-assisted differential evolution with region division for expensive optimization problems with discontinuous responses,” IEEE Trans. Evol. Comput., vol. 26, no. 4, pp. 780–792, 2022.
|
[44] |
G. G. Yen and Z. He, “Performance metric ensemble for multiobjective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 18, no. 1, pp. 131–144, 2014. doi: 10.1109/TEVC.2013.2240687
|
[45] |
T. D. Economon, F. Palacios, S. R. Copeland, T. W. Lukaczyk, and J. J. Alonso, “Su2: An open-source suite for multiphysics simulation and design,” AIAA J., vol. 54, no. 3, pp. 828–846, 2016. doi: 10.2514/1.J053813
|