A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
S. Chen, W. He, Z. Zhao, Y. Feng, Z. Liu, and K. S. Hong, “Adaptive control of a flexible manipulator with unknown hysteresis and intermittent actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–11, Jan. 2025.
Citation: S. Chen, W. He, Z. Zhao, Y. Feng, Z. Liu, and K. S. Hong, “Adaptive control of a flexible manipulator with unknown hysteresis and intermittent actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–11, Jan. 2025.

Adaptive Control of a Flexible Manipulator With Unknown Hysteresis and Intermittent Actuator Faults

Funds:  This work was supported in part by the National Key Research and Development Program of China (2023YFB4706400), the National Natural Science Foundation of China (62273112, 62073030, 62203161), the Guangdong Basic and Applied Basic Research Foundation (2023B1515120018, 2023B1515120019), the Open Project of Xiangjiang Laboratory (23XJ03012), the Natural Science Foundation of Hunan Province (2024JJ5087), the Natural Science Foundation of Jiangxi Province (20232BAB212024), the National Research Foundation of Korea funded by the Ministry of Science and ICT, South Korea (IRIS-2023-00207954), the Science and Technology Planning Project of Guangzhou, China (2023A03J0120), and the Guangzhou University Research Project (RC2023037)
More Information
  • In this study, we consider a single-link flexible manipulator in the presence of an unknown Bouc-Wen type of hysteresis and intermittent actuator faults. First, an inverse hysteresis dynamics model is introduced, and then the control input is divided into an expected input and an error compensator. Second, a novel adaptive neural network-based control scheme is proposed to cancel the unknown input hysteresis. Subsequently, by modifying the adaptive laws and local control laws, a fault-tolerant control strategy is applied to address uncertain intermittent actuator faults in a flexible manipulator system. Through the direct Lyapunov theory, the proposed scheme allows the state errors to asymptotically converge to a specified interval. Finally, the effectiveness of the proposed scheme is verified through numerical simulations and experiments.

     

  • loading
  • [1]
    H. Huang, W. He, Q. Fu, X. He, and C. Sun, “A bio-inspired flapping-wing robot with cambered wings and its application in autonomous airdrop,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2138–2150, 2022. doi: 10.1109/JAS.2022.106040
    [2]
    Z. Zhao and Z. Liu, “Finite-time convergence disturbance rejection control for a flexible Timoshenko manipulator,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 157–168, 2021. doi: 10.1109/JAS.2020.1003378
    [3]
    Z.-H. Luo, B.-Z. Guo, and Ö. Morgül, Stability and Stabilization of Infinite Dimensional Systems With Applications, London, UK: Springer Science & Business Media, 2012.
    [4]
    X. Zhao, S. Zhang, Z. Liu, J. Wang, and H. Gao, “Adaptive event-triggered boundary control for a flexible manipulator with input quantization,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 5, pp. 3706–3716, 2022. doi: 10.1109/TMECH.2021.3130592
    [5]
    T. Jiang, J. Liu, and W. He, “Boundary control for a flexible manipulator with a robust state observer,” J. Vibration and Control, vol. 24, no. 2, pp. 260–271, 2018. doi: 10.1177/1077546316635343
    [6]
    J. Wang, H. Zhang, K. Ma, Z. Liu, and C. L. P. Chen, “Neural adaptive self-triggered control for uncertain nonlinear systems with input hysteresis,” IEEE Trans. Neural Networks and Learning Syst., vol. 33, no. 11, pp. 6206–6214, 2022. doi: 10.1109/TNNLS.2021.3072784
    [7]
    X. Chen and T. Ozaki, “Adaptive control for plants in the presence of actuator and sensor uncertain hysteresis,” IEEE Trans. Autom. Control, vol. 56, no. 1, pp. 171–177, 2010.
    [8]
    M. Chen and S. S. Ge, “Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer,” IEEE Trans. Industrial Electronics, vol. 62, no. 12, pp. 7706–7716, 2015. doi: 10.1109/TIE.2015.2455053
    [9]
    Z. Li, Z. Li, H. Xu, X. Zhang, and C.-Y. Su, “Development of a butterfly fractional-order backlash-like hysteresis model for dielectric elastomer actuators,” IEEE Trans. Industrial Electronics, vol. 70, no. 2, pp. 1794–1801, 2023. doi: 10.1109/TIE.2022.3163553
    [10]
    Y. Cheng, B. Niu, X. Zhao, G. Zong, and A. M. Ahmad, “Event-triggered adaptive decentralised control of interconnected nonlinear systems with bouc-wen hysteresis input,” Int. J. Syst. Science, vol. 54, no. 6, pp. 1275–1288, 2023. doi: 10.1080/00207721.2023.2169845
    [11]
    X. Liu, Y. Wu, N. Wu, H. Yan, and Y. Wang, “Finite-time-prescribed performance-based adaptive command filtering control for mimo nonlinear systems with unknown hysteresis,” Nonlinear Dynamics, vol. 111, no. 8, pp. 7357–7375, 2023. doi: 10.1007/s11071-022-08216-6
    [12]
    Z. Zhao, Z. Liu, W. He, K.-S. Hong, and H.-X. Li, “Boundary adaptive fault-tolerant control for a flexible Timoshenko arm with backlash-like hysteresis,” Automatica, vol. 130, p. 109690, 2021. doi: 10.1016/j.automatica.2021.109690
    [13]
    W. He and T. Meng, “Adaptive control of a flexible string system with input hysteresis,” IEEE Trans. Control Syst. Techn., vol. 26, no. 2, pp. 693–700, 2018. doi: 10.1109/TCST.2017.2669158
    [14]
    J. Zhang, X. Xiang, W. Li, and Q. Zhang, “Adaptive saturated path following control of underactuated AUV with unmodeled dynamics and unknown actuator hysteresis,” IEEE Trans. Syst., Man, and Cybern.: Syst., vol. 53, no. 10, pp. 6018–6030, 2023. doi: 10.1109/TSMC.2023.3280065
    [15]
    G. Tao and P. V. Kokotovic, “Adaptive control of plants with unknown hystereses,” IEEE Trans. Autom. Control, vol. 40, no. 2, pp. 200–212, 1995. doi: 10.1109/9.341778
    [16]
    Y. Wang, X. Zhang, Z. Li, X. Chen, and C.-Y. Su, “Adaptive implicit inverse control for a class of butterfly-like hysteretic nonlinear systems and its application to dielectric elastomer actuators,” IEEE Trans. Industrial Electronics, vol. 70, no. 1, pp. 731–740, 2023. doi: 10.1109/TIE.2022.3146597
    [17]
    J. Zhou, C. Wen, and T. Li, “Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity,” IEEE Trans. Autom. Control, vol. 57, no. 10, pp. 2627–2633, 2012. doi: 10.1109/TAC.2012.2190208
    [18]
    K. Lu, Z. Liu, C. Chen, and Y. Zhang, “Adaptive inverse compensation for unknown input and output hysteresis using output feedback neural control,” IEEE Trans. Syst., Man, and Cybern.: Syst., vol. 52, no. 5, pp. 3224–3236, 2021.
    [19]
    Z. Liu, K. Lu, G. Lai, C. L. P. Chen, and Y. Zhang, “Indirect fuzzy control of nonlinear systems with unknown input and state hysteresis using an alternative adaptive inverse,” IEEE Trans. Fuzzy Syst., vol. 29, no. 3, pp. 500–514, 2021. doi: 10.1109/TFUZZ.2019.2952783
    [20]
    C. Wang, L. Guo, C. Wen, Q. Hu, and J. Qiao, “Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults,” IEEE Trans. Industrial Electronics, vol. 67, no. 3, pp. 2241–2250, 2020. doi: 10.1109/TIE.2019.2905837
    [21]
    Z. Liu, Z. Han, and W. He, “Adaptive fault-tolerant boundary control of an autonomous aerial refueling hose system with prescribed constraints,” IEEE Trans. Autom. Science and Engineering, vol. 19, no. 4, pp. 2678–2688, 2022. doi: 10.1109/TASE.2021.3070140
    [22]
    Z. Liu, J. Liu, and W. He, “Robust adaptive fault tolerant control for a linear cascaded ODE-beam system,” Automatica, vol. 98, pp. 42–50, 2018. doi: 10.1016/j.automatica.2018.09.021
    [23]
    S. Zhang, Y. Wu, X. He, and Z. Liu, “Cooperative fault-tolerant control for a mobile dual flexible manipulator with output constraints,” IEEE Trans. Autom. Science and Engineering, vol. 19, no. 4, pp. 2689–2698, 2022. doi: 10.1109/TASE.2021.3102588
    [24]
    L. Li, F. Cao, and J. Liu, “Adaptive vibration control for constrained moving vehicle-mounted nonlinear 3D rigid-flexible manipulator system subject to actuator failures,” J. Vibration and Control, vol. 29, no. 17–18, pp. 4155–41712023.
    [25]
    W. Wang and C. Wen, “Adaptive compensation for infinite number of actuator failures or faults,” Automatica, vol. 47, no. 10, pp. 2197–2210, 2011. doi: 10.1016/j.automatica.2011.08.022
    [26]
    Y. Ma, X. He, S. Zhang, Y. Sun, and Q. Fu, “Adaptive compensation for infinite number of actuator faults and time-varying delay of a flexible manipulator system,” IEEE Trans. Industrial Electronics, vol. 69, no. 12, pp. 13141–13150, 2022. doi: 10.1109/TIE.2021.3139193
    [27]
    Y. Ren, M. Chen, and J. Liu, “Bilateral coordinate boundary adaptive control for a helicopter lifting system with backlash-like hysteresis,” Science China Information Sciences, vol. 63, no. 1, pp. 1–3, 2020.
    [28]
    K. E. Majdoub, F. Giri, and F.-Z. Chaoui, “Adaptive backstepping control design for semi-active suspension of half-vehicle with magnetorheological damper,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 582–596, 2021. doi: 10.1109/JAS.2020.1003521
    [29]
    M. Rakotondrabe, “Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators,” IEEE Trans. Autom. Science and Engineering, vol. 8, no. 2, pp. 428–431, 2011. doi: 10.1109/TASE.2010.2081979
    [30]
    Z. Zhao, Y. Liu, T. Zou, K.-S. Hong, and H.-X. Li, “Robust adaptive fault-tolerant control for a riser-vessel system with input hysteresis and time-varying output constraints,” IEEE Trans. Cybern., vol. 53, no. 6, pp. 3939–3950, 2022.
    [31]
    X. Zhang, Y. Wang, C. Wang, C.-Y. Su, Z. Li, and X. Chen, “Adaptive estimated inverse output-feedback quantized control for piezoelectric positioning stage,” IEEE Trans. Cybern., vol. 49, no. 6, pp. 2106–2118, 2019. doi: 10.1109/TCYB.2018.2826519
    [32]
    W. Wu, Y. Li, and S. Tong, “Neural network output-feedback consensus fault-tolerant control for nonlinear multiagent systems with intermittent actuator faults,” IEEE Trans. Neural Networks and Learn ing Syst., vol. 34, no. 8, pp. 1–13, 2021.
    [33]
    S. Xu and B. He, “Robust adaptive fuzzy fault tolerant control of robot manipulators with unknown parameters,” IEEE Trans. Fuzzy Syst., vol. 31, no. 9, pp. 3081–3092, 2023. doi: 10.1109/TFUZZ.2023.3244189
    [34]
    H. Yang and J. Liu, “An adaptive rbf neural network control method for a class of nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 457–462, 2018. doi: 10.1109/JAS.2017.7510820
    [35]
    W. Wu, Y. Li, and S. Tong, “Neural network output-feedback consensus fault-tolerant control for nonlinear multiagent systems with intermittent actuator faults,” IEEE Trans. Neural Networks and Learning Systems, vol. 34, no. 8, pp. 4728–4740, 2021.
    [36]
    W. Wang, C. Wen, J. Huang, and J. Zhou, “Adaptive consensus of uncertain nonlinear systems with event triggered communication and intermittent actuator faults,” Automatica, vol. 111, p. 108667, 2020. doi: 10.1016/j.automatica.2019.108667
    [37]
    Y.-X. Li and G.-H. Yang, “Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults,” Automatica, vol. 72, pp. 177–185, 2016. doi: 10.1016/j.automatica.2016.06.008
    [38]
    Z. Zhao, Z. Tan, Z. Liu, M. O. Efe, and C. K. Ahn, “Adaptive inverse compensation fault-tolerant control for a flexible manipulator with unknown dead-zone and actuator faults,” IEEE Trans. Industrial Electronics, vol. 70, no. 12, pp. 12698–12707, 2023. doi: 10.1109/TIE.2023.3239926
    [39]
    F. Cao and J. Liu, “Adaptive actuator fault compensation control for a rigid-flexible manipulator with ODEs-PDEs model,” Int. J. Syst. Science, vol. 49, no. 8, pp. 1748–1759, 2018. doi: 10.1080/00207721.2018.1479002
    [40]
    M. Kharrat, “Neural networks-based adaptive fault-tolerant control for stochastic nonlinear systems with unknown backlash-like hysteresis and actuator faults,” J. Applied Mathematics and Computing, vol. 70, no. 3, pp. 1–24, 2024.
    [41]
    K. Xu, H. Wang, and P. X. Liu, “Command filter-based adaptive fixed-time fault-tolerant control for stochastic nonlinear systems with actuator hysteresis,” Asian J. Control, vol. 26, no. 3, pp. 1602–1613, 2023.
    [42]
    Y. Ma, X. He, M. Chen, and W. He, “Predictor-based control for a flexible satellite subject to output time delay,” IEEE Trans. Control Syst. Technology, vol. 30, no. 4, pp. 1420–1432, 2022. doi: 10.1109/TCST.2021.3109270
    [43]
    X. He, S. Zhang, Y. Ouyang, and Q. Fu, “Vibration control for a flexible single-link manipulator and its application,” IET Control Theory & Applications, vol. 14, no. 7, pp. 930–938, 2020.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (16) PDF downloads(8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return