Citation: | X. Jia, J. Li, S. Wang, H. Qi, F.-Y. Wang, R. Qin, M. Zhang, and X. Liang, “Federated services: A smart service ecology with federated security for aligned data supply and scenario-oriented demands,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 5, pp. 1–12, May 2025. |
[1] |
X. Jia, S. Gao, Y. Zhou, Q. Xue, and J. Fan, “A technical framework of efficient cross-domain data circulation for mega-city governance,” Front. Data Comput., vol. 5, no. 5, pp. 35–45, Oct. 2023.
|
[2] |
M. Papa, I. Chatzigiannakis, and A. Anagnostopoulos, “Automated natural language processing-based supplier discovery for financial services,” Big Data, vol. 12, no. 1, pp. 30–48, Feb. 2024. doi: 10.1089/big.2022.0215
|
[3] |
H. Herjanto, M. Amin, and E. F. Purington, “Panic buying: The effect of thinking style and situational ambiguity,” J. Retail. Consum. Serv., vol. 60, p. 102455, May 2021. doi: 10.1016/j.jretconser.2021.102455
|
[4] |
S. Akter, S. Motamarri, U. Hani, R. Shams, M. Fernando, M. M. Babu, and K. N. Shen, “Building dynamic service analytics capabilities for the digital marketplace,” J. Bus. Res., vol. 118, pp. 177–188, Sept. 2020. doi: 10.1016/j.jbusres.2020.06.016
|
[5] |
X. Jia. S. Gao, X. Jiang, H. Qi, X. Wang, J. Zhang, R. Qin, and L. Ouyang, “Research on key technologies of social computing for urban complex system,” Chin. J. Intell. Sci. Technol., vol. 3, no. 2, pp. 228–233, Jun. 2021.
|
[6] |
H. Kaur, H. Nori, S. Jenkins, R. Caruana, H. Wallach, and J. W. Vaughan, “Interpreting interpretability: Understanding data scientists' use of interpretability tools for machine learning,” in Proc. CHI Conf. Human Factors in Computing Systems, Honolulu, USA, 2020, pp. 1–14.
|
[7] |
J. W. Peltier, A. J. Dahl, and E. L. Swan, “Digital information flows across a B2C/C2C continuum and technological innovations in service ecosystems: A service-dominant logic perspective,” J. Bus. Res., vol. 121, pp. 724–734, Dec. 2020. doi: 10.1016/j.jbusres.2020.03.020
|
[8] |
A. Dosis and W. Sand-Zantman, “The ownership of data,” J. Law, Econ. Organ., vol. 39, no. 3, pp. 615–641, Nov. 2023. doi: 10.1093/jleo/ewac001
|
[9] |
X. Li, H. Zhao, and W. Deng, “BFOD: Blockchain-based privacy protection and security sharing scheme of flight operation data,” IEEE Internet Things J., vol. 11, no. 2, pp. 3392–3401, Jan. 2024. doi: 10.1109/JIOT.2023.3296460
|
[10] |
P. Singh, M. Masud, M. Shamim Hossain, and A. Kaur, “Cross-domain secure data sharing using blockchain for industrial IoT,” J. Parallel Distrib. Comput., vol. 156, pp. 176–184, Oct. 2021. doi: 10.1016/j.jpdc.2021.05.007
|
[11] |
O. H. Chi, C. G. Chi, D. Gursoy, and R. Nunkoo, “Customers' acceptance of artificially intelligent service robots: The influence of trust and culture,” Int. J. Inf. Manage., vol. 70, p. 102623, Jun. 2023. doi: 10.1016/j.ijinfomgt.2023.102623
|
[12] |
A. Falk, A. Becker, T. Dohmen, D. Huffman, and U. Sunde, “The preference survey module: A validated instrument for measuring risk, time, and social preferences,” Manage. Sci., vol. 69, no. 4, pp. 1935–1950, Apr. 2023.
|
[13] |
A. Wang, L. Lei, E. Lagunas, A. I. Pérez-Neira, S. Chatzinotas, and B. Ottersten, “NOMA-enabled multi-beam satellite systems: Joint optimization to overcome offered-requested data mismatches,” IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 900–913, Jan. 2021.
|
[14] |
M. M. Pereira and E. Frazzon, “A data-driven approach to adaptive synchronization of demand and supply in omni-channel retail supply chains,” Int. J. Inf. Manage., vol. 57, p. 102165, Apr. 2021.
|
[15] |
M. Naeem, T. Jamal, J. Diaz-Martinez, S. A. Butt, N. Montesano, M. I. Tariq, E. De-la-Hoz-Franco, and E. De-La-Hoz-Valdiris, “Trends and future perspective challenges in big data,” in Proc. 6th Euro-China Conf. Intelligent Data Analysis and Applications, Arad, Romania, 2019, pp. 309–325.
|
[16] |
K. Hopf, A. Weigert, and T. Staake, “Value creation from analytics with limited data: A case study on the retailing of durable consumer goods,” J. Decis. Syst., vol. 32, no. 2, pp. 289–325, Apr. 2023.
|
[17] |
J. L. Monino, “Data value, big data analytics, and decision-making,” J. Knowl. Econ., vol. 12, no. 1, pp. 256–267, Mar. 2021.
|
[18] |
F.-Y. Wang, Y. Wang, Y. Chen, Y. Tian, H. Qi, X. Wang, W. Zhang, J. Zhang, and Y. Yuan, “Federated ecology: From federated data to federated intelligence,” Chin. J. Intell. Sci. Technol., vol. 2, no. 4, pp. 305–311, Dec. 2020.
|
[19] |
C. Zhao, X. Dai, Y. Lv, J. Niu, and Y. Lin, “Decentralized autonomous operations and organizations in TransVerse: Federated intelligence for smart mobility,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 4, pp. 2062–2072, Apr. 2023.
|
[20] |
X. Jia, R. Qin, S. Wang, H. Qi, F.-Y. Wang, J. Li, M. Zhang, and X. Liang, “Federated services: Smart service paradigm based on distributed data co-governance,” Chin. J. Intell. Sci. Technol., vol. 6, no. 2, pp. 210–219, Jun. 2024.
|
[21] |
F.-Y. Wang, W. Zhang, Y. Tian, R. Qin, X. Wang, and B. Hu, “Federated data: Toward new generation of credible and trustable artificial intelligence,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 3, pp. 538–545, Jun. 2021.
|
[22] |
F.-Y. Wang, “New control paradigm for industry 5.0: From big models to foundation control and management,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 8, pp. 1643–1646, Aug. 2023.
|
[23] |
F.-Y. Wang, J. Yang, X. Wang, J. Li, and Q.-L. Han, “Chat with ChatGPT on industry 5.0: Learning and decision-making for intelligent industries,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 831–834, Apr. 2023. doi: 10.1109/JAS.2023.123552
|
[24] |
S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, F.-Y. Wang, “Blockchain-enabled smart contracts: Architecture, applications, and future trends,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 11, pp. 2266–2277, Nov. 2019.
|
[25] |
F.-Y. Wang, R. Qin, J. Li, X. Wang, H. Qi, X. Jia, and B. Hu, “Federated management: Toward federated services and federated security in federated ecology,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 6, pp. 1283–1290, Dec. 2021.
|
[26] |
J. Li, S. Guan, R. Qin, J. Hou, and F.-Y. Wang, “Intelligent blockchains and blockchain intelligence: The infrastructure intelligence for DePIN,” Chin. J. Intell. Sci. Technol., vol. 6, no. 1, pp. 5–16, Mar. 2024.
|
[27] |
R. Qin, W. Ding, J. Li, S. Guan, G. Wang, and Y. Ren, “Web3-based decentralized autonomous organizations and operations: Architectures, models, and mechanisms,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 4, pp. 2073–2082, Apr. 2023. doi: 10.1109/TSMC.2022.3228530
|
[28] |
J. Li and F.-Y. Wang, “The TAO of blockchain intelligence for intelligent Web 3.0,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 12, pp. 2183–2186, Dec. 2023. doi: 10.1109/JAS.2023.124056
|
[29] |
F.-Y. Wang, K. Kyriakopoulos, A. Tsolkas, and G. N. Saridis, “A Petri-net coordination model for an intelligent mobile robot,” IEEE Trans. Syst. Man Cybern., vol. 21, no. 4, pp. 777–789, Jul.–Aug. 1991. doi: 10.1109/21.108296
|
[30] |
X. Li, P. Ye, J. Lim, Z. Liu, L. Cao, and F.-Y. Wang, “From features engineering to scenarios engineering for trustworthy AI: I&I, C&C, and V&V,” IEEE Intell. Syst., vol. 37, no. 4, pp. 18–26, Jul.-Aug. 2022. doi: 10.1109/MIS.2022.3197950
|
[31] |
X. Li, R. Song, J. Fan, M. Liu, and F.-Y. Wang, “Development and testing of advanced driver assistance systems through scenario-based systems engineering,” IEEE Trans. Intell. Veh., vol. 8, no. 8, pp. 3968–3973, Aug. 2023. doi: 10.1109/TIV.2023.3297168
|
[32] |
Y. Yuan and F.-Y. Wang, “Blockchain: The state of the art and future trends,” Acta Autom. Sinica, vol. 42, no. 4, pp. 481–494, Apr. 2016.
|
[33] |
J. Li, J. Li, X. Wang, R. Qin, Y. Yuan, and F.-Y. Wang, “Multi-blockchain based data trading markets with novel pricing mechanisms,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 12, pp. 2222–2232, Dec. 2023. doi: 10.1109/JAS.2023.123963
|
[34] |
F. Fioretto and P. Van Hentenryck, “Privacy-preserving federated data sharing,” in Proc. 18th Int. Conf. Autonomous Agents and MultiAgent Systems, Montreal, Canada, 2019, pp. 638–646.
|
[35] |
P. V. Astillo, D. Duguma, H. Park, J. Kim, B. Kim, and I. You, “Federated intelligence of anomaly detection agent in IoTMD-enabled Diabetes Management Control System,” Future Gener. Comput. Syst., vol. 128, pp. 395–405, Mar. 2022. doi: 10.1016/j.future.2021.10.023
|
[36] |
H. Chen, F. W. Wang, and D. Zeng, “Intelligence and security informatics for homeland security: Information, communication, and transportation,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 4, pp. 329–341, Dec. 2004. doi: 10.1109/TITS.2004.837824
|
[37] |
S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F.-Y. Wang, “Decentralized autonomous organizations: Concept, model, and applications,” IEEE Trans. Comput. Soc. Syst., vol. 6, no. 5, pp. 870–878, Oct. 2019. doi: 10.1109/TCSS.2019.2938190
|
[38] |
J. Li, R. Qin, S. Guan, W. Ding, F. Lin, and F.-Y. Wang, “Attention markets of blockchain-based decentralized autonomous organizations,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1370–1380, Jun. 2024. doi: 10.1109/JAS.2024.124491
|
[39] |
F.-Y. Wang, “Parallel intelligence in metaverses: Welcome to hanoi!” IEEE Intell. Syst., vol. 37, no. 1, pp. 16–20, Jan.–Feb. 2022. doi: 10.1109/MIS.2022.3154541
|
[40] |
F.-Y. Wang, Q. Miao, X. Li, X. Wang, and Y. Lin, “What does ChatGPT say: The DAO from algorithmic intelligence to linguistic intelligence,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 575–579, Mar. 2023. doi: 10.1109/JAS.2023.123486
|
[41] |
K. Wu, Y. Ma, G. Huang, and X. Liu, “A first look at blockchain-based decentralized applications,” Softw. Pract. Exp., vol. 51, no. 10, pp. 2033–2050, Oct. 2021. doi: 10.1002/spe.2751
|
[42] |
N. Fei, Z. Lu, Y. Gao, G. Yang, Y. Huo, J. Wen, H. Lu, R. Song, X. Gao, T. Xiang, H. Sun, and J. R. Wen, “Towards artificial general intelligence via a multimodal foundation model,” Nat. Commun., vol. 13, p. 3094, Jun. 2022. doi: 10.1038/s41467-022-30761-2
|
[43] |
J. Li, R. Qin, and F.-Y. Wang, “The future of management: DAO to smart organizations and intelligent operations,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 53, no. 6, pp. 3389–3399, Jun. 2023. doi: 10.1109/TSMC.2022.3226748
|
[44] |
F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An introduction,” IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39–47, May 2009. doi: 10.1109/MCI.2009.932261
|
[45] |
N. Kshetri, “A typology of metaverses,” Computer, vol. 55, no. 12, pp. 150–155, Dec. 2022. doi: 10.1109/MC.2022.3204978
|
[46] |
J. Lu, X. Wang, X. Cheng, J. Yang, O. Kwan, and X. Wang, “Parallel factories for smart industrial operations: From big AI models to field foundational models and scenarios engineering,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2079–2086, Dec. 2022. doi: 10.1109/JAS.2022.106094
|
[47] |
J. Li, R. Qin, S. Guan, J. Hou, and F.-Y. Wang, “Blockchain intelligence: Intelligent blockchains for web 3.0 and beyond,” IEEE Trans. Syst. Man Cybern. Syst., vol. 54, no. 11, pp. 6633–6642, Nov. 2024. doi: 10.1109/TSMC.2023.3348449
|
[48] |
J. Wu, W. Gan, Z. Chen, S. Wan, and P. S. Yu, “Multimodal large language models: A survey,” in Proc. IEEE Int. Conf. Big Data, Sorrento, Italy, 2023, pp. 2247–2256.
|
[49] |
Y. Wang, M. Kang, Y. Liu, J. Li, K. Xue, X. Wang, J. Du, Y. Tian, Qi. Ni, and F.-Y. Wang, “Can digital intelligence and cyber-physical-social systems achieve global food security and sustainability?” IEEE/CAA J. Autom. Sinica, vol. 10, no. 11, pp. 2070–2080, Nov. 2023. doi: 10.1109/JAS.2023.123951
|
[50] |
T. Shen, J. Sun, S. Kong, Y. Wang, J. Li, X. Li, and F.-Y. Wang, “The journey/DAO/TAO of embodied intelligence: From large models to foundation intelligence and parallel intelligence,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1313–1316, Jun. 2024. doi: 10.1109/JAS.2024.124407
|
[51] |
Y. Tian, J. Wang, Y. Wang, C. Zhao, F. Yao, and X. Wang, “Federated vehicular transformers and their federations: Privacy-preserving computing and cooperation for autonomous driving,” IEEE Trans. Intell. Veh., vol. 7, no. 3, pp. 456–465, Sept. 2022. doi: 10.1109/TIV.2022.3197815
|
[52] |
Z. Chen and N. Li, “An optimal control-based distributed reinforcement learning framework for a class of non-convex objective functionals of the multi-agent network,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 11, pp. 2081–2093, Nov. 2023. doi: 10.1109/JAS.2022.105992
|
[53] |
A. Joshi, S. Capezza, A. Alhaji, and M. Y. Chow, “Survey on AI and machine learning techniques for microgrid energy management systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1513–1529, Jul. 2023. doi: 10.1109/JAS.2023.123657
|
[54] |
J. Zhang, “Knowledge learning with crowdsourcing: A brief review and systematic perspective,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 749–762, May 2022. doi: 10.1109/JAS.2022.105434
|
[55] |
J. Li, M. Zhou, X. Xue, J. Zhu, S. Han, L. Li, and F.-Y. Wang, “A sustainable ecology of mobility: DAO-based autonomous vehicular services,” IEEE Trans. Intell. Veh., vol. 8, no. 12, pp. 4682–4684, Dec. 2023. doi: 10.1109/TIV.2023.3334719
|
[56] |
X. Dai, M. Vallati, R. Guo, Y. Wang, S. Han, and Y. Lin, “THE ROAD AHEad: DAO-secured V2X infrastructures for safe and smart vehicular management,” IEEE Trans. Intell. Veh., vol. 8, no. 12, pp. 4674–4677, Dec. 2023. doi: 10.1109/TIV.2023.3337993
|
[57] |
M. Qi, Z. Wang, Q.-L. Han, J. Zhang, S. Chen, and Y. Xiang, “Privacy protection for blockchain-based healthcare IoT systems: A survey,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 8, pp. 1757–1776, Aug. 2024. doi: 10.1109/JAS.2022.106058
|
[58] |
P. Lang, D. Tian, X. Duan, J. Zhou, Z. Sheng, V. C. M. Leung, “Cooperative computation offloading in blockchain-based vehicular edge computing networks,” IEEE Trans. Intell. Veh., vol. 7, no. 3, pp. 783–798, Sept. 2022. doi: 10.1109/TIV.2022.3190308
|
[59] |
A. Chaddad, Q. Lu, J. Li, Y. Katib, R. Kateb, C. Tanougast, A. Bouridane, and A. Abdulkadir, “Explainable, domain-adaptive, and federated artificial intelligence in medicine,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 859–876, Apr. 2023. doi: 10.1109/JAS.2023.123123
|
[60] |
X. Jiang, X. Kong, and Z. Ge, “Augmented industrial data-driven modeling under the curse of dimensionality,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1445–1461, Jun. 2023. doi: 10.1109/JAS.2023.123396
|
[61] |
U. Lee, G. Jung, E. Y. Ma, J. S. Kim, H. Kim, J. Alikhanov, Y. Noh, and H. Kim, “Toward data-driven digital therapeutics analytics: Literature review and research directions,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 42–66, Jan. 2023. doi: 10.1109/JAS.2023.123015
|
[62] |
F.-Y. Wang, “Parallel control and management for intelligent transportation systems: Concepts, architectures, and applications,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 630–638, Sept. 2010. doi: 10.1109/TITS.2010.2060218
|
[63] |
X. Wang, J. Li, L. Fan, Y. Wang, and Y. Li, “Advancing vehicular healthcare: The DAO-based parallel maintenance for intelligent vehicles,” IEEE Trans. Intell. Veh., vol. 8, no. 12, pp. 4671–4673, Dec. 2023. doi: 10.1109/TIV.2023.3341855
|
[64] |
J. Yang, Q. Ni, G. Luo, Q. Cheng, L. Oukhellou, and S. Han, “A trustworthy internet of vehicles: The DAO to safe, secure, and collaborative autonomous driving,” IEEE Trans. Intell. Veh., vol. 8, no. 12, pp. 4678–4681, Dec. 2023. doi: 10.1109/TIV.2023.3337345
|
[65] |
J. Zhu, F.-Y. Wang, G. Wang, Y. L. Tian, Y. Yuan, X. Wang, H. W. Qi, and X. F. Jia, “Federated control: A distributed control approach towards information security and rights protection,” Acta Autom. Sinica, vol. 47, no. 8, pp. 1912–1920, Aug. 2021.
|
[66] |
J. Zhu, Y. Yuan, F.-Y. Wang, and G. Wang, “Federated control: A trustable control framework for large-scale cyber-physical systems,” IEEE Trans. Ind. Inf., vol. 20, no. 5, pp. 7986–7994, May 2024. doi: 10.1109/TII.2024.3363092
|
[67] |
Y. Zhao, H. Cao, Z. Zhu, S. Qiu, B. Chen, Peng Jiao, and F.-Y. Wang, “Crowd sensing intelligence for ITS: Participants, methods, and stages,” IEEE Trans. Intell. Veh., vol. 8, no. 6, pp. 3541–3546, Jun. 2023. doi: 10.1109/TIV.2023.3284046
|
[68] |
J. Tu, J. Fan, N. Tang, P. Wang, G. Li, X. Du, X. Jia, and S. Gao, “Unicorn: A unified multi-tasking model for supporting matching tasks in data integration,” Proc. ACM Manage. Data, vol. 1, no. 1, p. 84, May 2023.
|