Citation: | Z. Liu, Y. Zhang, Y. Zhang, and F. Wang, “Distributed economic dispatch algorithms of microgrids integrating grid-connected and isolated modes,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–13, Jan. 2025. |
[1] |
N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” IEEE Power and Energy Magazine, vol. 5, no. 4, pp. 78–94, 2007. doi: 10.1109/MPAE.2007.376583
|
[2] |
K. T. Chaturvedi, M. Pandit, and L. Srivastava, “Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch,” IEEE Trans. Power Systems, vol. 23, no. 3, pp. 1079–1087, 2008. doi: 10.1109/TPWRS.2008.926455
|
[3] |
L. Yang, X. Li, M. Sun, and C. Sun, “Hybrid policy-based reinforcement learning of adaptive energy management for the energy transmission-constrained island group,” IEEE Trans. Industrial Informatics, p. , 2023.
|
[4] |
A. Kavousi-Fard, A. Zare, and A. Khodaei, “Effective dynamic scheduling of reconfigurable microgrids,” IEEE Trans. Power Systems, vol. 33, no. 5, pp. 5519–5530, 2018. doi: 10.1109/TPWRS.2018.2819942
|
[5] |
J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed optimization and learning over networks,” IEEE Trans. Signal Processing, vol. 60, no. 8, pp. 4289–4305, 2012. doi: 10.1109/TSP.2012.2198470
|
[6] |
S. Yang, S. Tan, and J.-X. Xu, “Consensus based approach for economic dispatch problem in a smart grid,” IEEE Trans. Power Systems, vol. 28, no. 4, pp. 4416–4426, 2013. doi: 10.1109/TPWRS.2013.2271640
|
[7] |
G. Chen and Z. Zhao, “Delay effects on consensus-based distributed economic dispatch algorithm in microgrid,” IEEE Trans. Power Systems, vol. 33, no. 1, pp. 602–612, 2018. doi: 10.1109/TPWRS.2017.2702179
|
[8] |
Z. Wang, G Chen, and H Li, “An efficient distributed algorithm for economic dispatch considering communication asynchrony and time delays,” Energy Conversion and Economics, vol. 3, no. 4, pp. 214–226, 2022.
|
[9] |
C. Zhao, X. Duan, and Y. Shi, “Analysis of consensus-based economic dispatch algorithm under time delays,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 50, no. 8, pp. 2978–2988, 2020.
|
[10] |
J. Hu, Y. Ye, Y. Tang, and G. Strbac, “Towards risk-aware real-time security constrained economic dispatch: A tailored deep reinforcement learning approach,” IEEE Trans. Power Systems, vol. 39, no. 2, pp. 3972–3986, 2024. doi: 10.1109/TPWRS.2023.3288039
|
[11] |
Q. Yang, G. Chen, and T. Wang, “Admm-based distributed algorithm for economic dispatch in power systems with both packet drops and communication delays,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 842–852, 2020. doi: 10.1109/JAS.2020.1003156
|
[12] |
R. de Azevedo, M. H. Cintuglu, T. Ma, and O. A. Mohammed, “Multiagent-based optimal microgrid control using fully distributed diffusion strategy,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 1997–2008, 2017. doi: 10.1109/TSG.2016.2587741
|
[13] |
G. Binetti, A. Davoudi, F. L. Lewis, D. Naso, and B. Turchiano, “Distributed consensus-based economic dispatch with transmission losses,” IEEE Trans. Power Systems, vol. 29, no. 4, pp. 1711–1720, 2014. doi: 10.1109/TPWRS.2014.2299436
|
[14] |
W. T. El-Sayed, A. S. A. Awad, M. A. Azzouz, and M. F. Shaaban, “A new economic dispatch for coupled transmission and active distribution networks via hierarchical communication structure,” IEEE Systems J., vol. 17, no. 4, pp. 6226–6236, 2023. doi: 10.1109/JSYST.2023.3315190
|
[15] |
C. Li, X. Yu, T. Huang, and X. He, “Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch,” IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2407–2418, 2018. doi: 10.1109/TNNLS.2017.2691760
|
[16] |
T. Yang, J. Lu, D. Wu, J. Wu, G. Shi, Z. Meng, and K. H. Johansson, “A distributed algorithm for economic dispatch over time-varying directed networks with delays,” IEEE Trans. Industrial Electronics, vol. 64, no. 6, pp. 5095–5106, 2017. doi: 10.1109/TIE.2016.2617832
|
[17] |
Y. Li, R. Ren, B. Huang, R. Wang, Q. Sun, D. W. Gao, and H. Zhang, “Distributed hybrid-triggering-based secure dispatch approach for smart grid against DOS attacks,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 53, no. 6, pp. 3574–3587, 2023. doi: 10.1109/TSMC.2022.3228780
|
[18] |
H. Dai, J. Jia, L. Yan, X. Fang, and W. Chen, “Distributed fixed-time optimization in economic dispatch over directed networks,” IEEE Trans. Industrial Informatics, vol. 17, no. 5, pp. 3011–3019, 2021. doi: 10.1109/TII.2020.3010282
|
[19] |
B. Huang, Y. Liu, L. Glielmo, and W. Gui, “Fixed-time distributed robust optimization for economic dispatch with event-triggered intermittent control,” Science China Technological Sciences, vol. 66, no. 5, pp. 1385–1396, 2023. doi: 10.1007/s11431-022-2352-9
|
[20] |
H. Huang, M. Shi, and Q. Xu, “Consensus-based economic dispatch algorithm in a microgrid via distributed event-triggered control,” Int. J. Systems Science, vol. 51, no. 15, pp. 3044–3054, 2020. doi: 10.1080/00207721.2020.1808110
|
[21] |
Z. Li, Z. Cheng, J. Liang, J. Si, L. Dong, and S. Li, “Distributed event-triggered secondary control for economic dispatch and frequency restoration control of droop-controlled AC microgrids,” IEEE Trans. Sustainable Energy, vol. 11, no. 3, pp. 1938–1950, 2020. doi: 10.1109/TSTE.2019.2946740
|
[22] |
H. Dai, X. Fang, and W. Chen, “Distributed event-triggered algorithms for a class of convex optimization problems over directed networks,” Automatica, vol. 122, p. 109256, 2020. doi: 10.1016/j.automatica.2020.109256
|
[23] |
Z. Li, Z. Cheng, J. Si, and S. Li, “Distributed event-triggered hierarchical control to improve economic operation of hybrid AC/DC microgrids,” IEEE Trans. Power Systems, vol. 37, no. 5, pp. 3653–3668, 2022. doi: 10.1109/TPWRS.2021.3133487
|
[24] |
N. Zhang, Q. Sun, L. Yang, and Y. Li, “Event-triggered distributed hybrid control scheme for the integrated energy system,” IEEE Trans. Industrial Informatics, vol. 18, no. 2, pp. 835–846, 2021.
|
[25] |
Y. Li, H. Zhang, X. Liang, and B. Huang, “Event-triggered-based distributed cooperative energy management for multienergy systems,” IEEE Trans. Industrial Informatics, vol. 15, no. 4, pp. 2008–2022, 2019. doi: 10.1109/TII.2018.2862436
|
[26] |
D. Zhao, D. Liu, and L. Liu, “Distributed privacy preserving algorithm for economic dispatch over time-varying communication,” IEEE Trans. Power Systems, vol. 39, no. 1, pp. 643–657, 2024. doi: 10.1109/TPWRS.2023.3246998
|
[27] |
Q. Xu, C. Yu, X. Yuan, Z. Fu, and H. Liu, “A privacy-preserving distributed subgradient algorithm for the economic dispatch problem in smart grid,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1625–1627, 2023. doi: 10.1109/JAS.2022.106028
|
[28] |
W. Chen and G.-P. Liu, “Privacy-preserving consensus-based distributed economic dispatch of smart grids via state decomposition,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1–12, 2024. doi: 10.1109/JAS.2024.124437
|
[29] |
Z. Tang, D. J. Hill, and T. Liu, “A novel consensus-based economic dispatch for microgrids,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3920–3922, 2018. doi: 10.1109/TSG.2018.2835657
|
[30] |
G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimization,” IEEE Trans. Control of Network Systems, vol. 5, no. 3, pp. 1245–1260, 2018. doi: 10.1109/TCNS.2017.2698261
|
[31] |
A. Nedić, A. Olshevsky, W. Shi, and C. A. Uribe, “Geometrically convergent distributed optimization with uncoordinated step-sizes,” in Proc. American Control Conf, pp. 3950–3955, 2017.
|
[32] |
T. Yang, Y. Wan, H. Wang, and Z. Lin, “Global optimal consensus for discrete-time multi-agent systems with bounded controls,” Automatica, vol. 97, pp. 182–185, 2018. doi: 10.1016/j.automatica.2018.08.017
|
[33] |
Z. Wang, D. Wang, C. Wen, F. Guo, and W. Wang, “Push-based distributed economic dispatch in smart grids over time-varying unbalanced directed graphs,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 3185–3199, 2021. doi: 10.1109/TSG.2021.3063128
|
[34] |
R. Babazadeh-Dizaji and M. Hamzeh, “Distributed hierarchical control for optimal power dispatch in multiple DC microgrids,” IEEE Systems J., vol. 14, no. 1, pp. 1015–1023, 2020. doi: 10.1109/JSYST.2019.2937836
|
[35] |
W. Chen and T. Li, “Distributed economic dispatch for energy internet based on multiagent consensus control,” IEEE Trans. Autom. Control, vol. 66, no. 1, pp. 137–152, 2021. doi: 10.1109/TAC.2020.2979749
|
[36] |
J. Hu, J. Duan, H. Ma, and M.-Y. Chow, “Distributed adaptive droop control for optimal power dispatch in DC microgrid,” IEEE Trans. Industrial Electronics, vol. 65, no. 1, pp. 778–789, 2018. doi: 10.1109/TIE.2017.2698425
|
[37] |
Y. Xu, W. Zhang, and W. Liu, “Distributed dynamic programming-based approach for economic dispatch in smart grids,” IEEE Trans. Industrial Informatics, vol. 11, no. 1, pp. 166–175, 2015. doi: 10.1109/TII.2014.2378691
|
[38] |
D. Jakovetić, J. Xavier, and J. M. F. Moura, “Fast distributed gradient methods,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1131–1146, 2014. doi: 10.1109/TAC.2014.2298712
|
[39] |
A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, 2009. doi: 10.1109/TAC.2008.2009515
|
[40] |
S. Pu, W. Shi, J. Xu, and A. Nedić, “Push-pull gradient methods for distributed optimization in networks,” IEEE Trans. Autom. Control, vol. 66, no. 1, pp. 1–16, 2021. doi: 10.1109/TAC.2020.2972824
|
[41] |
K. Cai and H. Ishii, “Average consensus on general digraphs,” in Proc. 50th IEEE Conf. Decision and Control and European Control Conf., pp. 1956–1961, 2011.
|
[42] |
T. Yang, J. George, J. Qin, X. Yi, and J. Wu, “Distributed least squares solver for network linear equations,” Automatica, vol. 113, p. 108798, 2020. doi: 10.1016/j.automatica.2019.108798
|
[43] |
A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric convergence for distributed optimization over time-varying graphs,” SIAM J. Optimization, vol. 27, no. 4, pp. 2597–2633, 2017. doi: 10.1137/16M1084316
|
[44] |
W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algorithm for decentralized consensus optimization,” SIAM J. Optimization, vol. 25, no. 2, pp. 944–966, 2015. doi: 10.1137/14096668X
|
[45] |
C. Xi, V. S. Mai, R. Xin, E. H. Abed, and U. A. Khan, “Linear convergence in optimization over directed graphs with row-stochastic matrices,” IEEE Trans. Autom. Control, vol. 63, no. 10, pp. 3558–3565, 2018. doi: 10.1109/TAC.2018.2797164
|
[46] |
H. Li, H. Hui, and H. Zhang, “Decentralized energy management of microgrid based on blockchain-empowered consensus algorithm with collusion prevention,” IEEE Trans. Sustainable Energy, vol. 14, no. 4, pp. 2260–2273, 2023. doi: 10.1109/TSTE.2023.3258452
|
[47] |
Y. Zhang, Z. Liu, and Z. Chen, “A marginal cost consensus scheme with reset mechanism for distributed economic dispatch in besss,” IEEE Trans. Smart Grid, pp. 1–1, 2023.
|