A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
H. Liu, Q.-L. Han, and Y. Li, “Set-valued state estimation of nonlinear discrete-time systems and its application to attack detection,” IEEE/CAA J. Autom. Sinica, 2023.
Citation: H. Liu, Q.-L. Han, and Y. Li, “Set-valued state estimation of nonlinear discrete-time systems and its application to attack detection,” IEEE/CAA J. Autom. Sinica, 2023.

Set-Valued State Estimation of Nonlinear Discrete-Time Systems and Its Application to Attack Detection

Funds:  This work was partially supported by the National Natural Science Foundation of China (61703286)
More Information
  • This paper investigates set-valued state estimation of nonlinear systems with unknown-but-bounded (UBB) noises based on constrained polynomial zonotopes which is utilized to characterize non-convex sets. First, properties of constrained polynomial zonotopes are provided and the order reduction method is given to reduce the computational complexity. Then, the corresponding improved prediction-update algorithm is proposed so that it can be adapted to non-convex sets. Based on generalized intersection, the utilization of set-based estimation for attack detection is analyzed. Finally, an example is given to show the efficiency of our results.

     

  • loading
  • [1]
    T. Alamo, J. M. Bravo, and E. F. Camacho, “Guaranteed state estimation by zonotopes,” Automatica, vol. 41, pp. 1035–1043, 2005. doi: 10.1016/j.automatica.2004.12.008
    [2]
    Y. Wang, V. Puig, and G. Cembrano, “Set-membership approach and Kalman observer based on zonotopes for discrete-time descriptor systems,” Automatica, vol. 93, pp. 435–443, 2018. doi: 10.1016/j.automatica.2018.03.082
    [3]
    C. Combastel, “Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence,” Automatica, vol. 55, pp. 265–273, 2015. doi: 10.1016/j.automatica.2015.03.008
    [4]
    Z. H. Wang, W. T. Tang, Q. H. Zhang, V. Puig and Y. Shen, “Zonotopic state estimation and fault detection for systems with time-invariant uncertainties,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 494–499, 2018. doi: 10.1016/j.ifacol.2018.09.622
    [5]
    N. Meslem, A. Hably and T. Raïssi, “Zonotopic unknown input state estimator for discrete-time linear systems,” Syst. Control Lett., vol. 162, p. 105168, 2022. doi: 10.1016/j.sysconle.2022.105168
    [6]
    Y. Wang, V. Puig, F. Xu and G. Cembrano, “Robust fault detection and isolation based on zonotopic unknown input observers for discrete-time descriptor systems,” J. Franklin Inst., vol. 356, no. 10, pp. 5293–5314, 2019. doi: 10.1016/j.jfranklin.2019.04.014
    [7]
    D. Silvestre, “Set-valued estimators for uncertain linear parameter-varying systems,” Syst. Control Lett., vol. 166, p. 105311, 2022. doi: 10.1016/j.sysconle.2022.105311
    [8]
    B. S. Rego, J. K. Scott, D. M. Raimondo, and G. V. Raffo, “Set-valued state estimation of nonlinear discrete-time systems with nonlinear invariants based on constrained zonotopes,” Automatica, vol. 129, p. 109638, 2021. doi: 10.1016/j.automatica.2021.109638
    [9]
    H. Ethabet, D. Rabehi, D. Efimov, and T. Raïssi, “Interval estimation for continuous-time switched linear systems,” Automatica, vol. 90, pp. 230–238, 2018. doi: 10.1016/j.automatica.2017.12.035
    [10]
    Y. S. Liu, Y. Zhao, and F. L. Wu, “Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown-but-bounded disturbances,” IET Control Theory Appl., vol. 10, no. 4, pp. 431–442, 2016. doi: 10.1049/iet-cta.2015.0654
    [11]
    L. Chisci, A. Garulli, and G. Zappa, “Recursive state bounding by parallelotopes,” Automatica, vol. 32, no. 7, pp. 1049–1055, 1996. doi: 10.1016/0005-1098(96)00048-9
    [12]
    Y. Wang, Z. H. Wang, V. Puig, and G. Cembrano, “Zonotopic set-membership state estimation for discrete-time descriptor LPV systems,” IEEE Trans. Autom. Control, vol. 64, no. 5, pp. 2092–2099, 2019. doi: 10.1109/TAC.2018.2863659
    [13]
    C. Trapiello, V. Puig, and D. Rotondo, “A zonotopic set-invariance analysis of replay attacks affecting the supervisory layer,” Syst. Control Lett., vol. 157, p. 105056, 2021. doi: 10.1016/j.sysconle.2021.105056
    [14]
    J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz, “Constrained zonotopes: A new tool for set-based estimation and fault detection,” Automatica, vol. 69, pp. 126–136, 2016. doi: 10.1016/j.automatica.2016.02.036
    [15]
    B. S. Rego, G. V. Raffo, J. K. Scott, and D. M. Raimondo, “Guaranteed methods based on constrained zonotopes for set-valued state estimation of nonlinear discrete-time systems,” Automatica, vol. 111, p. 108614, 2020. doi: 10.1016/j.automatica.2019.108614
    [16]
    B. S. Rego, J. K. Scott, D. M. Raimondo, and G. V. Raffo, “Set-valued state estimation of nonlinear discrete-time systems with nonlinear invariants based on constrained zonotopes,” Automatica, vol. 129, p. 109638, 2021. doi: 10.1016/j.automatica.2021.109638
    [17]
    S. Kousik, A. Dai, and G. X. Gao, “Ellipsotopes: Uniting ellipsoids and zonotopes for reachability analysis and fault detection,” IEEE Trans. Autom. Control, vol. 68, no. 6, pp. 3440–3452, 2023. doi: 10.1109/TAC.2022.3191750
    [18]
    N. Kochdumper, and M. Althoff, “Sparse polynomial zonotopes: A novel set repersentation for reachability analysis,” IEEE Trans. Autom. Control, vol. 66, no. 9, pp. 4043–4058, 2021. doi: 10.1109/TAC.2020.3024348
    [19]
    N. Kochdumper, and M. Althoff, “Constrained polynomial zonotopes,” arXiv preprint, arXiv: 2005.00849v1, 2020.
    [20]
    Y. P. Yang, C. Peng, and Q. L. Han, “The synchronization of networked harmonic oscillators under denial-of-service attacks,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 2, pp. 789–800, 2023. doi: 10.1109/TSMC.2022.3189403
    [21]
    K. K. Zhang, C. Keliris, T. Parisini, and M. M. Polycarpou, “Identification of sensor replay attacks and physical faults for cyber-physical systems,” IEEE Control Syst. Lett., vol. 6, pp. 1178–1183, 2022. doi: 10.1109/LCSYS.2021.3089674
    [22]
    Y. Y. Zhang and S. Li, “Kinematic control of serial manipulators under false data injection attack,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1009–1019, 2023. doi: 10.1109/JAS.2023.123132
    [23]
    X. Gong, M. V. Basin, Z. G. Feng, T. W. Huang, and Y. K. Cui, “Resilient time-varying formation-tracking of multi-UAV systems against composite attacks: A two-layered framework,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 969–984, 2023. doi: 10.1109/JAS.2023.123339
    [24]
    J. Giraldo, Da. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O. Tippenhauer, H. Sandberg and R. Candell, “A survey of physics-based attack detection in cyber-physical systems,” ACM Computing Surveys, vol. 51, no. 4, pp. 76:1–36, 2018.
    [25]
    G. Franzè, F. Tedesco and D. Famularo, “Resilience against replay attacks: A distributed model predictive control scheme for networked multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 628–640, 2021. doi: 10.1109/JAS.2020.1003542
    [26]
    C. W. Wu, Z. R. Hu, J. X. Liu, and L. G. Wu, “Secure estimation for cyber-physical systems via sliding mode,” IEEE Trans. Cybern., vol. 48, no. 12, pp. 3420–3431, 2018. doi: 10.1109/TCYB.2018.2825984
    [27]
    T. Alamo, J. M. Bravo, and E. F. Camacho, “Guaranteed state estimation by zonotopes,” Automatica, vol. 41, pp. 1035–1043, 2005. doi: 10.1016/j.automatica.2004.12.008
    [28]
    A. A. De Paula, G. V. Raffo, and B. O. S. Teixeira, “Applications of control: Zonotopic filtering for uncertain nonlinear systems,” IEEE Control Syst., vol. 42, no. 1, pp. 19–51, 2022. doi: 10.1109/MCS.2021.3122311
    [29]
    H. Mirzaeinejad, “Optimization-based nonlinear control laws with increased robustness for trajectory tracking of non-holonomic wheeled mobile robots,” Transport. Res. C-Emer., vol. 101, pp. 1–17, 2019. doi: 10.1016/j.trc.2019.02.003
    [30]
    G. F. Franklin, J. D. Powell, and A. Emami-Naeini, “Feedback Control of Dynamic Systems (7th Edition),” Pearson Education Ltd., London, 7th Edition, 2014.
    [31]
    V. Mistler, A. Benallegue, and N. K. M'Sirdi, “Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback,” Proc. of the 10th IEEE international workshop on robot and human interactive communication, pp. 586–593, 2001.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (118) PDF downloads(28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return