IEEE/CAA Journal of Automatica Sinica
Citation: | Zeeshan Alam, Liguo Yuan and Qigui Yang, "Chaos and Combination Synchronization of a New Fractional-order System with Two Stable Node-foci," IEEE/CAA J. of Autom. Sinica, vol. 3, no. 2, pp. 157-164, 2016. |
[1] |
Oldham K B, Spanier J. The Fractional Calculus. New York: Academic Press, 1974.
|
[2] |
Hilfer R. Applications of Fractional Calculus in Physics. New Jersey: World Scientific, 2000.[3] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. San Diego: Elsevier, 2006.
|
[3] |
Hirsch M W, Smale S. Differential Equations, Dynamical Systems and Linear Algebra. New York: Academic Press, 1974.
|
[4] |
Hartley T T, Lorenzo C F, Qammer H K. Chaos in a fractional order Chua's system. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 1995, 42(8): 485-490
|
[5] |
Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 2003, 91(3): 034101
|
[6] |
Li C P, Chen G R. Chaos in the fractional order Chen system and its control. Chaos, Solitons & Fractals, 2004, 22(3): 549-554
|
[7] |
Petravs I. Chaos in the fractional-order Volta's system: modeling and simulation. Nonlinear Dynamics, 2009, 57: 157-170
|
[8] |
Yang Q G, Zeng C B. Chaos in fractional conjugate Lorenz system and its scaling attractors. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(12): 4041-4051
|
[9] |
Li C G, Chen G R. Chaos and hyperchaos in the fractional order Rossler equations. Physica A: Statistical Mechanics and Its Applications, 2004, 341: 55-61
|
[10] |
Maouk A E. Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system. Physics Letters A, 2009, 373(25): 2166-2173
|
[11] |
Zeng C B, Yang Q G, Wang J W. Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci. Nonlinear Dynamics, 2011, 65(4): 457-466
|
[12] |
Podlubny I. Fractional Differential Equations. San Diego: Academic Press, 1998.
|
[13] |
Yang Q G, Wei Z C, Chen G R. An unusual 3D autonomous quadratic chaotic system with two stable node-foci. International Journal of Bifurcation and Chaos, 2010, 20(4): 1061-1083
|
[14] |
Matignon D. Stability results for fractional differential equations with applications to control processing. In: Proceedings of the 1996 International Conference on Computational Engineering in Systems and Application. Lille, France, 1996. 963-968
|
[15] |
Diethelm K, Ford N J. Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications, 2002, 265(2): 229-248
|
[16] |
Li C P, Ma Y T. Fractional dynamical system and its linearization theorem. Nonlinear Dynamics, 2013, 71(4): 621-633
|
[17] |
Deng W H, Li C P, Lu J H. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, 2007, 48(4): 409-416
|
[18] |
Barnett S. Polynomials and Linear Control Systems. New York: Marcel Dekker, 1983.
|
[19] |
Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 2002, 29(1-4): 3-22
|
[20] |
Cafagna D, Garssi G. Fractional-order chua's circuit: time-domain analysis, bifurcation, chaotic behavior and test for chaos. International Journal of Bifurcation and Chaos, 2008, 18(3): 615-639
|
[21] |
Cafagna D, Grassi G. Bifurcation and chaos in the fractional-order chen system via a time-domain approach. International Journal of Bifurcation and Chaos, 2008, 18(7): 1845-1863
|
[22] |
Alomari A K, Noorani M S M, Nazar R, Li C P. Homotopy analysis method for solving fractional Lorenz system. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(7): 1864-1872
|
[23] |
Tavazoei M S, Haeri M. Limitations of frequency domain approximation for detecting chaos in fractional order systems. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69(4): 1299-1320
|
[24] |
Deng W H, Li C P. The evolution of chaotic dynamics for fractional unified system. Physics Letters A, 2008, 372(4): 401-407
|
[25] |
Wolf A, Swift J B, Swinney H L, Vastano J A. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 1985, 16: 285-317
|
[26] |
Eckmann J P, Kamphorst S O, Ruelle D, Ciliberto S. Liapunov exponents from time series. Physical Review A, 1986, 34(6): 4971-4979
|
[27] |
Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 1993, 65(1-2): 117-134
|
[28] |
Muthukumar P, Balasubramaniam P. Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dynamics, 2013, 74(4): 1169-1181
|
[29] |
Zhou T S, Li C P. Synchronization in fractional-order differential systems. Physica D: Nonlinear Phenomena, 2005, 212(1-2): 111-125
|
[30] |
Lu J G. Chaotic dynamics of the fractional order Lu system and its synchronization. Physics Letters A, 2006, 354(4): 305-311
|
[31] |
Wu X J, Lu Y. Generalized projective synchronization of the fractionalorder Chen hyperchaotic system. Nonlinear Dynamics, 2009, 57(1-2): 25-35
|
[32] |
Wang J W, Zhang Y B. Network synchronization in a population of star-coupled fractional nonlinear oscillators. Physics Letters A, 2010, 374(13-14): 1464-1468
|
[33] |
Odibat Z M. Adaptive feedback control and synchronization of nonidentical chaotic fractional order systems. Nonlinear Dynamics, 2010, 60(4): 479-487
|
[34] |
Yuan L G, Yang Q G. Parameter identification and synchronization of fractional-order chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 305-316
|
[35] |
Luo R Z, Wang Y L, Deng S C. Combination synchronization of three classic chaotic systems using active backstepping design. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2011, 21(4): 043114
|
[36] |
Luo R Z, Wang Y L. Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2012, 22(2): 023109 Scientific, 2000.
|