A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
C. Zhou, M. Liu, S. Zhang, R. Zheng, and S. Dong, “Bearings-only target motion analysis via deep reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 4, pp. 1–3, Apr. 2025.
Citation: C. Zhou, M. Liu, S. Zhang, R. Zheng, and S. Dong, “Bearings-only target motion analysis via deep reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 4, pp. 1–3, Apr. 2025.

Bearings-Only Target Motion Analysis Via Deep Reinforcement Learning

More Information
  • loading
  • [1]
    S. C. Nardone, A. G. Lindgren, and K. F. Gong, “Fundamental properties and performance of conventional bearings-only target motion analysis,” IEEE Trans. Autom. Control, vol. 29, no. 9, pp. 775–787, 1984. doi: 10.1109/TAC.1984.1103664
    [2]
    H. J. Shao, X. P. Zhang, and Z. Wang, “Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables,” IEEE Trans. Signal Process., vol. 62, no. 10, pp. 2580–2594, 2014. doi: 10.1109/TSP.2014.2314064
    [3]
    A. G. Lindgren and K. F. Gong, “Position and velocity estimation via bearing observations,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-14, no. 4, pp. 564–577, 1978. doi: 10.1109/TAES.1978.308681
    [4]
    M. Arellano and O. Bover, “Another look at the instrumental variable estimation of error-components models,” J. Econometrics, vol. 68, no. 1, pp. 29–51, 1995. doi: 10.1016/0304-4076(94)01642-D
    [5]
    Z. Wang, J. A. Luo, and X. P. Zhang, “A novel location-penalized maximum likelihood estimator for bearing-only target localization,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6166–6181, 2012. doi: 10.1109/TSP.2012.2218809
    [6]
    R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. Cambridge, USA: MIT Press, 2018.
    [7]
    K. Doğançay, “3D pseudolinear target motion analysis from angle measurements,” IEEE Trans. Signal Process., vol. 63, no. 6, pp. 1570–1580, 2015. doi: 10.1109/TSP.2015.2399869
    [8]
    F. Pang, K. Doğançay, N. H. Nguyen, and Q. Zhang, “AOA Pseudolinear target motion analysis in the presence of sensor location errors,” IEEE Trans. Signal Process., vol. 68, pp. 3385–3399, 2020. doi: 10.1109/TSP.2020.2998896
    [9]
    K. Doğançay, “Bias compensation for the bearings-only pseudolinear target track estimator,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 59–68, 2006. doi: 10.1109/TSP.2005.861088
    [10]
    B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse reinforcement learning.,” in Proc. AAAI Conf. Artif. Intell., 2008, pp. 1433–1438.
    [11]
    T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Offpolicy maximum entropy deep reinforcement learning with a stochastic actor,” in Proc. Int. Conf. Mach. Learn., 2018, vol. 80, pp. 1861–1870.
    [12]
    W. Qin and X. Luo, “Asynchronous parallel fuzzy stochastic gradient descent for high-dimensional incomplete data representation,” IEEE Trans. Fuzzy Syst., vol. 32, no. 2, pp. 445–459, 2024. doi: 10.1109/TFUZZ.2023.3300370
    [13]
    X. Y. Shi, Q. He, X. Luo, Y. N. Bai, and M. S. Shang, “Large-scale and scalable latent factor analysis via distributed alternative stochastic gradient descent for recommender systems,” IEEE Trans. Big Data, vol. 8, no. 2, pp. 420–431, 2022.
    [14]
    K. Doğançay, “Bearings-only target localization using total least squares,” Signal Process, vol. 85, no. 9, pp. 1695–1710, 2005. doi: 10.1016/j.sigpro.2005.03.007

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return