IEEE/CAA Journal of Automatica Sinica
Citation: | Songsong Cheng, Shengguo Wang, Yiheng Wei, Qing Liang and Yong Wang, "Study on Four Disturbance Observers for FO-LTI Systems," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 442-450, Oct. 2016. |
[1] |
Monje C A, Chen Y Q, Vinagre B M, Xue D Y, Feliu-Batlle V. Fractional-Order Systems and Controls:Fundamentals and Applications. London, UK:Springer-Verlag, 2010.
|
[2] |
Das S. Functional Fractional Calculus (Second edition). Berlin, Heidelberg:Springer, 2011.
|
[3] |
Liao Z, Zhu Z T, Liang S, Peng C, Wang Y. Subspace identification for fractional order Hammerstein systems based on instrumental variables. International Journal of Control, Automation and Systems, 2012, 10(5):947-953 doi: 10.1007/s12555-012-0511-5
|
[4] |
Patil M D, Vyawahare V A, Bhole M K. A new and simple method to construct root locus of general fractional-order systems. ISA Transactions, 2014, 53(2):380-390 doi: 10.1016/j.isatra.2013.09.002
|
[5] |
Lan Y H, Li W J, Zhou Y, Luo Y P. Non-fragile observer design for fractional-order one-sided Lipschitz nonlinear systems. International Journal of Automation and Computing, 2013, 10(4):296-302 doi: 10.1007/s11633-013-0724-y
|
[6] |
Liang S, Peng C, Liao Z, Wang Y. State space approximation for general fractional order dynamic systems. International Journal of Systems Science, 2014, 45(10):2203-2212 doi: 10.1080/00207721.2013.766773
|
[7] |
Lu J G, Chen G R. Robust stability and stabilization of fractional-order interval systems:an LMI approach. IEEE Transactions on Automatic Control, 2009, 54(6):1294-1299 doi: 10.1109/TAC.2009.2013056
|
[8] |
Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α:the case 0 << α << 1. IEEE Transactions on Automatic Control, 2010, 55(1):152-158 doi: 10.1109/TAC.2009.2033738
|
[9] |
Ruszewski A. Practical stability and asymptotic stability of interval fractional discrete-time linear state-space system. Recent Advances in Automation, Robotics and Measuring Techniques. Switzerland:Springer International Publishing, 2014. 217-227 http://cn.bing.com/academic/profile?id=94421374&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
Liang Shu, Peng Cheng, Wang Yong. Improved linear matrix inequalities stability criteria for fractional order systems and robust stabilization synthesis:the 0 < α < 1 case. Control Theory and Applications, 2013, 30(4):531-535(in Chinese) http://cn.bing.com/academic/profile?id=2373078592&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
NDoye I, Darouach M, Zasadzinski M, Radhy N E. Robust stabilization of uncertain descriptor fractional-order systems. Automatica, 2013, 49(6):1907-1913 doi: 10.1016/j.automatica.2013.02.066
|
[12] |
Agrawal S K, Das S. A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dynamics, 2013, 73(1-2):907-919 doi: 10.1007/s11071-013-0842-7
|
[13] |
Li C L, Su K L, Zhang J, Wei D Q. Robust control for fractional-order four-wing hyperchaotic system using LMI. Optik-International Journal for Light and Electron Optics, 2013, 124(22):5807-5810 doi: 10.1016/j.ijleo.2013.04.054
|
[14] |
Asheghan M M, Delshad S S, Beheshti M T H, Tavazoei M S. Nonfragile control and synchronization of a new fractional order chaotic system. Applied Mathematics and Computation, 2013, 222:712-721 doi: 10.1016/j.amc.2013.07.045
|
[15] |
Guo L, Cao S Y. Anti-disturbance control theory for systems with multiple disturbances:a survey. ISA Transactions, 2014, 53(4):846-849 doi: 10.1016/j.isatra.2013.10.005
|
[16] |
Shtessel Y, Edwards C, Fridman L, Levant A. Sliding Mode Control and Observation. New York:Springer, 2014.
|
[17] |
Guo B Z, Jin F F. The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam equation with boundary input disturbance. Automatica, 2013, 49(9):2911-2918 doi: 10.1016/j.automatica.2013.06.018
|
[18] |
Yue H Y, Li J M. Adaptive fuzzy dynamic surface control for a class of perturbed nonlinear time-varying delay systems with unknown deadzone. International Journal of Automation and Computing, 2012, 9(5):545-554 doi: 10.1007/s11633-012-0678-5
|
[19] |
Li Z, Xia Y, Cao X. Adaptive control of bilateral teleoperation with unsymmetrical time-varying delays. International Journal of Innovative Computing, Information and Control, 2013, 9(2):753-767
|
[20] |
Liu R J, Liu G P, Wu M, Nie Z Y. Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach. Journal of the Franklin Institute, 2014, 351(6):3364-3377 doi: 10.1016/j.jfranklin.2014.02.015
|
[21] |
Han Jing-Qing. Active Disturbance Rejection Control Technique-the Technique for Estimating and Compensating the Uncertainties. Beijing, China:National Defense Industry Press, 2008. (in Chinese)
|
[22] |
Fedele G, Ferrise A. Periodic disturbance rejection with unknown frequency and unknown plant structure. Journal of the Franklin Institute, 2014, 351(2):1074-1092 doi: 10.1016/j.jfranklin.2013.10.013
|
[23] |
Nakao M, Ohnishi K, Miyachi K. A robust decentralized joint control based on interference estimation. In:Proceedings of the 1987 IEEE International Conference on Robotics and Automation. Raleigh, North Carolina, USA:1987. 326-331
|
[24] |
Chen W H, Yang J, Guo L, Li S H. Disturbance-observer-based control and related methods:an overview. IEEE Transactions on Industrial Electronics, 2016, 63(2):1083-1095 doi: 10.1109/TIE.2015.2478397
|
[25] |
Park S K, Lee S H. Disturbance observer based robust control for industrial robots with flexible joints. In:Proceedings of the 2007 International Conference on Control, Automation, and Systems. Seoul, Korea:IEEE, 2007. 584-589
|
[26] |
Ginoya D, Shendge P D, Phadke S B. Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Transactions on Industrial Electronics, 2014, 61(4):1983-1992 doi: 10.1109/TIE.2013.2271597
|
[27] |
Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):2951-2957 doi: 10.1016/j.cnsns.2014.01.022
|
[28] |
Wei Y H, Karimi H R, Liang S, Gao Q, Wang Y. General output feedback stabilization for fractional order systems:an LMI approach. Abstract and Applied Analysis, 2014, 2014:Article ID 737495 http://cn.bing.com/academic/profile?id=2025076994&encoded=0&v=paper_preview&mkt=zh-cn
|
[29] |
Wei Y H, Gao Q, Peng C, Wang Y. A rational approximate method to fractional order systems. International Journal of Control, Automation, and Systems, 2014, 12(6):1180-1186 doi: 10.1007/s12555-013-0109-6
|
[30] |
Li M D, Li D H, Wang J, Zhao C Z. Active disturbance rejection control for fractional-order system. ISA Transactions, 2013, 52(3):365-374 doi: 10.1016/j.isatra.2013.01.001
|