Citation: | X. Ma, T. Chen, and Y. Wang, “Dynamic process monitoring based on dot product feature analysis for thermal power plants,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–12, Feb. 2025. |
[1] |
L. Wen, L. Gao, and X. Li, “A new deep transfer learning based on sparse auto-encoder for fault diagnosis,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 49, no. 1, pp. 136–144, Jan. 2019. doi: 10.1109/TSMC.2017.2754287
|
[2] |
W. G. Fenton, T. M. McGinnity, and L. P. Maguire, “Fault diagnosis of electronic systems using intelligent techniques: A review,” IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.), vol. 31, no. 3, pp. 269–281, Aug. 2001. doi: 10.1109/5326.971655
|
[3] |
D. Wu, D. Zhou, M. Chen, J. Zhu, F. Yan, S. Zheng, and E. Guo, “Output-relevant common trend analysis for KPI-related nonstationary process monitoring with applications to thermal power plants,” IEEE Trans. Ind. Informat., vol. 17, no. 10, pp. 6664–6675, Oct. 2021. doi: 10.1109/TII.2020.3041516
|
[4] |
B. Pattipati, C. Sankavaram, and K. Pattipati, “System identification and estimation framework for pivotal automotive battery management system characteristics,” IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.), vol. 41, no. 6, pp. 869–884, Nov. 2011.
|
[5] |
Z. Huang, Z. Wang, and H. Zhang, “Multilevel feature moving average ratio method for fault diagnosis of the microgrid inverter switch,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 177–185, Apr. 2017. doi: 10.1109/JAS.2017.7510496
|
[6] |
E. Principi, D. Rossetti, S. Squartini, and F. Piazza, “Unsupervised electric motor fault detection by using deep autoencoders,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 441–451, Mar. 2019. doi: 10.1109/JAS.2019.1911393
|
[7] |
Y. Wang, Y. Si, B. Huang, and Z. Lou, “Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms: 2008-2017,” Can. J. Chem. Eng., vol. 96, no. 10, pp. 2073–2085, Oct. 2018. doi: 10.1002/cjce.23249
|
[8] |
B. Pourbabaee, M. J. Roshtkhari, and K. Khorasani, “Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 48, no. 12, pp. 2095–2104, Dec. 2018. doi: 10.1109/TSMC.2017.2705582
|
[9] |
Y. Jiang and S. Yin, “Recent advances in key-performance-indicator oriented prognosis and diagnosis with a MATLAB toolbox: DB-KIT,” IEEE Trans. Ind. Informat., vol. 15, no. 5, pp. 2849–2858, May 2019.
|
[10] |
X. Wang, X. Liu, and Y. Li, “An incremental model transfer method for complex process fault diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1268–1280, Sept. 2019. doi: 10.1109/JAS.2019.1911618
|
[11] |
H. Chen, B. Jiang, N. Lu, and Z. Mao, “Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains,” IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 4819–4830, Jun. 2018.
|
[12] |
J. Zhang, D. Zhou, and M. Chen, “Adaptive cointegration analysis and modified RPCA with continual learning ability for monitoring multimode nonstationary processes,” IEEE Trans. Cybern., vol. 53, no. 8, pp. 4841–4854, Aug. 2023. doi: 10.1109/TCYB.2021.3140065
|
[13] |
H. Su and G. Zheng, “A partial least squares regression-based fusion model for predicting the trend in drowsiness,” IEEE Trans. Syst., Man, Cybern.——Part A: Syst. Humans, vol. 38, no. 5, pp. 1085–1092, Sept. 2008. doi: 10.1109/TSMCA.2008.2001067
|
[14] |
C. Shang, B. Huang, F. Yang, and D. Huang, “Slow feature analysis for monitoring and diagnosis of control performance,” J. Process Control, vol. 39, pp. 21–34, Mar. 2016. doi: 10.1016/j.jprocont.2015.12.004
|
[15] |
Z. Lou, Y. Wang, Y. Si, and S. Lu, “A novel multivariate statistical process monitoring algorithm: Orthonormal subspace analysis,” Automatica, vol. 138, p. 110148, Apr. 2022. doi: 10.1016/j.automatica.2021.110148
|
[16] |
Q. Chen, Z. Liu, X. Ma, and Y. Wang, “Artificial neural correlation analysis for performance-indicator-related nonlinear process monitoring,” IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 1039–1049, Feb. 2022.
|
[17] |
J. Shang, M. Chen, H. Ji, and D. Zhou, “Recursive transformed component statistical analysis for incipient fault detection,” Automatica, vol. 80, pp. 313–327, Jun. 2017. doi: 10.1016/j.automatica.2017.02.028
|
[18] |
Y. Qin, Y. Yan, H. Ji, and Y. Wang, “Recursive correlative statistical analysis method with sliding windows for incipient fault detection,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 4185–4194, Apr. 2022. doi: 10.1109/TIE.2021.3070521
|
[19] |
Y. Wang, T. Hou, M. Cui, and X. Ma, “Orthogonal stationary component analysis for nonstationary process monitoring,” IEEE Trans. Instrum. Meas., vol. 72, p. 3527309, Aug. 2023.
|
[20] |
C.-Y. Zhang, Z.-L. Yao, H.-Y. Yao, F. Huang, and C. L. P. Chen, “Dynamic representation learning via recurrent graph neural networks,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 53, no. 2, pp. 1284–1297, Feb. 2023.
|
[21] |
W. Ku, R. H. Storer, and C. Georgakis, “Disturbance detection and isolation by dynamic principal component analysis,” Chemometr. Intell. Lab. Syst., vol. 30, no. 1, pp. 179–196, Nov. 1995. doi: 10.1016/0169-7439(95)00076-3
|
[22] |
Z. Lou, D. Shen, and Y. Wang, “Two-step principal component analysis for dynamic processes monitoring,” Can. J. Chem. Eng., vol. 96, no. 1, pp. 160–170, Jan. 2018. doi: 10.1002/cjce.22855
|
[23] |
C. Shang, B. Huang, and D. Huang, “A systematic approach to dynamic monitoring of industrial processes based on second-order slow feature analysis,” IFAC-PapersOnLine, vol. 51, no. 18, pp. 387–392, Oct. 2018.
|
[24] |
J. Zheng, C. Zhao, and F. Gao, “Retrospective comparison of several typical linear dynamic latent variable models for industrial process monitoring,” Comput. Chem. Eng., vol. 157, p. 107587, Jan. 2022. doi: 10.1016/j.compchemeng.2021.107587
|
[25] |
X. Ma, Y. Si, Z. Yuan, Y. Qin, and Y. Wang, “Multistep dynamic slow feature analysis for industrial process monitoring,” IEEE Trans. Instrum. Meas., vol. 69, no. 12, pp. 9535–9548, Dec. 2020.
|
[26] |
X. Ma, Y. Si, Y. Qin, and Y. Wang, “Fault detection for dynamic processes based on recursive innovational component statistical analysis,” IEEE Trans. Autom. Sci. Eng., vol. 20, no. 1, pp. 310–319, Jan. 2023. doi: 10.1109/TASE.2022.3149591
|
[27] |
J. Shang and M. Chen, “Recursive dynamic transformed component statistical analysis for fault detection in dynamic processes,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 578–588, Jan. 2018. doi: 10.1109/TIE.2017.2721929
|
[28] |
Y. Dong, S. J. Qin, “A novel dynamic PCA algorithm for dynamic data modeling and process monitoring,” J. Process Control, vol. 67, pp. 1–11, Jul. 2018. doi: 10.1016/j.jprocont.2017.05.002
|
[29] |
W. Yu, C. Zhao, and B. Huang, “Recursive cointegration analytics for adaptive monitoring of nonstationary industrial processes with both static and dynamic variations,” J. Process Control, vol. 92, pp. 319–332, Aug. 2020.
|
[30] |
D. Zhou, Y. Zhao, Z. Wang, X. He, and M. Gao, “Review on diagnosis techniques for intermittent faults in dynamic systems,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2337–2347, Mar. 2020. doi: 10.1109/TIE.2019.2907500
|
[31] |
J. Yu, L. Ye, L. Zhou, Z. Yang, F. Shen, and Z. Song, “Dynamic process monitoring based on variational Bayesian canonical variate analysis,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 52, no. 4, pp. 2412–2422, Apr. 2022. doi: 10.1109/TSMC.2021.3051054
|
[32] |
C. Zhao and H. Sun, “Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4749–4758, Jun. 2019. doi: 10.1109/TIE.2018.2864703
|
[33] |
G. H. Golub and C. F. Van Loan, Matrix Computations. 4th ed. Baltimore, USA: JHU Press, 2012.
|
[34] |
H. Ji, “Statistics Mahalanobis distance for incipient sensor fault detection and diagnosis,” Chem. Eng. Sci., vol. 230, p. 116223, Feb. 2021.
|
[35] |
L. Feng and C. Zhao, “Fault description based attribute transfer for zero-sample industrial fault diagnosis,” IEEE Trans. Ind. Informat., vol. 17, no. 3, pp. 1852–1862, Mar. 2021. doi: 10.1109/TII.2020.2988208
|