Citation: | Y.-A. Wang, Z. Wang, L. Zou, B. Shen, and H. Dong, “Detection of perfect stealthy attacks on cyber-physical systems subject to measurement quantizations: A watermark-based strategy,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–12, Jan. 2025. |
[1] |
A. Y. Lu and G.-H. Yang, “False data injection attacks against state estimation without knowledge of estimators,” IEEE Trans. Autom. Control, vol. 67, no. 9, pp. 4529–4540, Sept. 2022. doi: 10.1109/TAC.2022.3161259
|
[2] |
M. Higgins, F. Teng, and T. Parisini, “Stealthy MTD against unsupervised learning-based blind FDI attacks in power systems,” IEEE Trans. Information Forensics and Security, vol. 16, pp. 1275–1287, Dec. 2021. doi: 10.1109/TIFS.2020.3027148
|
[3] |
B. Qu, Z. Wang, B. Shen, H. Dong, and X. Zhang, “Secure particle filtering with Paillier encryption-decryption scheme for cyber-physical multi-machine power grids,” IEEE Trans. Smart Grid, vol. 15, no. 1, pp. 863–873, Jan. 2024. doi: 10.1109/TSG.2023.3271949
|
[4] |
S. Xiao, X. Ge, Q.-L. Han, and Y. Zhang, “Distributed resilient estimator design for positive systems under topological attacks,” IEEE Trans. Cybernetics, vol. 51, no. 7, pp. 3676–3686, Jul. 2021. doi: 10.1109/TCYB.2020.2981646
|
[5] |
P. B. Bithas, A. A. Rontogiannis, and G. K. Karagiannidis, “An improved threshold-based channel selection scheme for wireless communication systems,” IEEE Trans. Wireless Communications, vol. 15, no. 2, pp. 1531–1546, Feb. 2016. doi: 10.1109/TWC.2015.2492538
|
[6] |
D. Ding, Q.-L. Han, X. Ge, and J. Wang, “Secure state estimation and control of cyber-physical systems: A survey,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 176–190, Jan. 2021. doi: 10.1109/TSMC.2020.3041121
|
[7] |
B. Zhang, C. Dou, D. Yue, J. H. Park, Y. Zhang, and Z. Zhang, “Game and dynamic communication path-based pricing strategies for microgrids under communication interruption,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1032–1047, Apr. 2023. doi: 10.1109/JAS.2023.123138
|
[8] |
X. Wang and G.-H. Yang, “Adaptive reliable coordination control for linear agent networks with intermittent communication constraints,” IEEE Trans. Control of Network Systems, vol. 5, no. 3, pp. 1120–1131, Sept. 2018. doi: 10.1109/TCNS.2017.2687818
|
[9] |
X. Qian and B. Cui, “A mobile sensing approach to distributed consensus filtering of 2D stochastic nonlinear parabolic systems with disturbances,” Systems Science and Control Engineering, vol. 11, no. 1, p. 2167885, 2023.
|
[10] |
Z. Yaghoubi, N. Taheri Javan, and M. Bahaghighat, “Consensus tracking for a class of fractional-order non-linear multi-agent systems via an adaptive dynamic surface controller,” Systems Science and Control Engineering, vol. 11, no. 1, p. 2207602, 2023.
|
[11] |
E. Akbari, S. M. Tabatabaei, M. B. Yazdi, M. M. Arefi, and J. Cao, “Resilient backstepping control for a class of switched nonlinear time-delay systems under hybrid cyber-attacks,” Engineering Applications of Artificial Intelligence, vol. 122, Jun. 2023.
|
[12] |
L. Ding and W. Sun, “Predefined time fuzzy adaptive control of switched fractional-order nonlinear systems with input saturation,” Int. J. Network Dynamics and Intelligence, vol. 2, no. 4, p. 100019, Dec. 2023.
|
[13] |
F. Pasqualetti, F. Dorfler, and F. Bullo, “Attack detection and identification in cyber-physical systems,” IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2715–2729, Nov. 2013. doi: 10.1109/TAC.2013.2266831
|
[14] |
M. Zhong, X. Zhu, T. Xue, and L. Zhang, “An overview of recent advances in model-based event-triggered fault detection and estimation,” Int. J. Systems Science, vol. 54, no. 4, pp. 929–943, 2023. doi: 10.1080/00207721.2022.2146990
|
[15] |
D. Ye and T. Zhang, “Summation detector for false data-injection attack in cyber-physical systems,” IEEE Trans. Cybernetics, vol. 50, no. 6, pp. 2338–2345, Jun. 2020. doi: 10.1109/TCYB.2019.2915124
|
[16] |
Y. Zhang, Z. Wang, L. Zou, H. Dong, and X. Yi, “Neural-network-based secure state estimation under energy-constrained denial-of-service attacks: An encoding-decoding scheme,” IEEE Trans. Network Science and Engineering, vol. 10, no. 4, pp. pp. 2002–2015, Jul.–Aug. 2023. doi: 10.1109/TNSE.2023.3237639
|
[17] |
Y. Shoukry, P. Nuzzo, A. Puggelli, A. L. Sangiovanni-Vincentelli, S. A. Seshia, and P. Tabuada, “Secure state estimation for cyber physicalsystems under sensor attacks: A satisfiability modulo theory approach,” IEEE Trans. Autom. Control, vol. 62, no. 10, pp. 4917–4932, Nov. 2017. doi: 10.1109/TAC.2017.2676679
|
[18] |
A. Chattopadhyay and U. Mitra, “Security against false data injection attack in cyber-physical systems,” IEEE Trans. Control of Network Systems, vol. 7, no. 2, pp. 1015–1027, Feb. 2020. doi: 10.1109/TCNS.2019.2927594
|
[19] |
S. Feng, X. Li, S. Zhang, Z. Jian, H. Duan, and Z. Wang, “A review: State estimation based on hybrid models of Kalman filter and neural network,” Systems Science and Control Engineering, vol. 11, no. 1, p. 2173682, 2023.
|
[20] |
P. Griffioen, S. Weerakkody, and B. Sinopoli, “A moving target defense for securing cyber-physical systems,” IEEE Trans. Autom. Control, vol. 66, no. 5, pp. pp. 2016–2031, May 2021. doi: 10.1109/TAC.2020.3005686
|
[21] |
Z. Zhang, J. Hu, J. Lu, J. Cao, and F. E. Alsaadi, “Preventing false data injection attacks in LFC system via the attack-detection evolutionary game model and KF algorithm,” IEEE Trans. Network Science and Engineering, vol. 9, no. 6, pp. 4349–4362, Nov. 2022. doi: 10.1109/TNSE.2022.3199881
|
[22] |
G. Park, C. Lee, H. Shim, Y. Eun, and K. H. Johansson, “Stealthy adversaries against uncertain cyber-physical systems: Threat of robust zero-dynamics attack,” IEEE Trans. Autom. Control, vol. 64, no. 12, pp. 4907–4919, Dec. 2019. doi: 10.1109/TAC.2019.2903429
|
[23] |
M. Ghaderi, K. Cheitasi, and W. Lucia, “A blended active detection strategy for false data injection attacks in cyber-physical systems,” IEEE Trans. Control of Network Systems, vol. 8, no. 1, pp. 168–176, Mar. 2021. doi: 10.1109/TCNS.2020.3024315
|
[24] |
F. Li and Y. Tang, “False data injection attack for cyber-physical systems with resource constraint,” IEEE Trans. Cybernetics, vol. 50, no. 2, pp. 729–738, Feb. 2020. doi: 10.1109/TCYB.2018.2871951
|
[25] |
L. Sun, T. Wu, and Y. Zhang, “A defense strategy for false data injection attacks in multi-agent systems,” Int. J. Systems Science, vol. 54, no. 16, pp. 3071–3084, 2023. doi: 10.1080/00207721.2023.2268239
|
[26] |
T. Li, Z. Wang, L. Zou, B. Chen, and L. Yun, “A dynamic encryption-decryption scheme for replay attack detection in cyber-physical systems,” Automatica, vol. 151, p. 110926, May 2023. doi: 10.1016/j.automatica.2023.110926
|
[27] |
A. Abdelwahab, W. Lucia, and A, “Youssef, set-theoretic control for active detection of replay attacks with applications to smart grid,” in Proc. Conf. Control Technology and Applications, Canada, pp. 1004–1009, Aug. 2020.
|
[28] |
S.-S. Dong, Y.-G. Li, and L. An, “Optimal strictly stealthy attacks in cyber-physical systems with multiple channels under the energy constraint,” Int. J. Systems Science, vol. 54, no. 13, pp. 2608–2625, 2023. doi: 10.1080/00207721.2023.2245949
|
[29] |
J. Zhou, W. Yang, W. Ding, W. X. Zheng, and Y. Xu, “Watermarking-based protection strategy against stealthy integrity attack on distributed state estimation,” IEEE Trans. Autom. Control, vol. 68, no. 1, pp. 628–635, Jan. 2023. doi: 10.1109/TAC.2022.3171422
|
[30] |
C. Fang, Y. Qi, J. Chen, R. Tan, and W. X. Zheng, “Stealthy actuator signal attacks in stochastic control systems: Performance and limitations,” IEEE Trans. Autom. Control, vol. 65, no. 9, pp. 3927–3934, Sept. 2020. doi: 10.1109/TAC.2019.2950072
|
[31] |
Q. Zhang, K. Liu, Z.-H. Pang, Y. Xia, and, T. Liu, “Reachability analysis of cyber-physical systems under stealthy attacks,” IEEE Trans. Cybernetics, vol. 52, no. 6, pp. 4926–4934, Jun. 2022. doi: 10.1109/TCYB.2020.3025307
|
[32] |
Z. Guo, D. Shi, K. H. Johansson, and L. Shi, “Worst-case stealthy innovation-based linear attack on remote state estimation,” Automatica, vol. 89, pp. 117–124, Mar. 2018. doi: 10.1016/j.automatica.2017.11.018
|
[33] |
D. Du, C. Zhang, X. Li, M. Fei, T. Yang, and H. Zhou, “Secure control of networked control systems using dynamic watermarking,” IEEE Trans. Cybernetics, vol. 52, no. 12, pp. 13609–13622, Dec. 2022. doi: 10.1109/TCYB.2021.3110402
|
[34] |
I. Bessa, C. Trapiello, V. Puig, and R. M. Palhares, “Dual-rate control framework with safe watermarking against deception attacks,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 52, no. 12, pp. 7494–7506, Dec. 2022. doi: 10.1109/TSMC.2022.3160791
|
[35] |
C. Fang, Y. Qi, P. Chen, and W. X. Zheng, “Optimal periodic watermarking schedule for replay attack detection in cyber-physical systems,” Automatica, vol. 112, p. 108698, Feb. 2020. doi: 10.1016/j.automatica.2019.108698
|
[36] |
P. Hespanhol, M. Porter, R. Vasudevan, and A. Aswani, “Sensor switching control under attacks detectable by finite sample dynamic watermarking tests,” IEEE Trans. Autom. Control, vol. 66, no. 10, pp. 4560–4574, Oct. 2021. doi: 10.1109/TAC.2020.3032085
|
[37] |
H. Liu, Y. Li, Q.-L. Han, and T. Ralssi, “Watermark-based proactive defense strategy design for cyber-physical systems with unknown-but-bounded noises,” IEEE Trans. Autom. Control, vol. 68, no. 6, pp. 3300–3315, Jun. 2023. doi: 10.1109/TAC.2022.3184396
|
[38] |
D. Wang, J. Huang, Y. Tang, and F. Li, “A watermarking strategy against linear deception attacks on remote state estimation under K-L divergence,” IEEE Trans. Industrial Informatics, vol. 17, no. 5, pp. 3273–3281, May 2021. doi: 10.1109/TII.2020.3009874
|
[39] |
D. Du, C. Zhang, X. Li, M. Fei, T. Yang, and H. Zhou, “Attack detection for networked control systems using event-triggered dynamic watermarking,” IEEE Trans. Industrial Informatics, vol. 19, no. 1, pp. 351–361, Jan. 2023. doi: 10.1109/TII.2022.3168868
|
[40] |
M. Porter, P. Hespanhol, A. Aswani, M. J. Roberson, and R. Vasudevan, “Detecting generalized replay attacks via time-varying dynamic watermarking,” IEEE Trans. Autom. Control, vol. 66, no. 8, pp. 3502–3517, Aug. 2021. doi: 10.1109/TAC.2020.3022756
|
[41] |
Y. Mo, S. Weerakkody, and B. Sinopoli, “Physical authentication of control systems: Designing watermarked control inputs to detect counterfeit sensor outputs,” IEEE Control Systems Magazine, vol. 35, no. 1, pp. 93–109, Feb. 2015. doi: 10.1109/MCS.2014.2364724
|
[42] |
J. H. Huang, D. W. C. Ho, F. F. Li, W. Yang, and Y. Tang, “Secure remote state estimation against linear man-in-the-middle attacks using watermarking,” Automatica, vol. 121, p. 109182, Nov. 2020. doi: 10.1016/j.automatica.2020.109182
|
[43] |
R. M. G. Ferrari, and A. M. H. Teixeira, “A switching multiplicative watermarking scheme for detection of stealthy cyber-attacks,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2558–2573, Jun. 2021. doi: 10.1109/TAC.2020.3013850
|
[44] |
Y. Wang, H.-J. Liu, and H.-L. Tan, “An overview of filtering for sampled-data systems under communication constraints,” Int. J. Network Dynamics and Intelligence, vol. 2, no. 3, p. 100011, Sep. 2023.
|
[45] |
X. Wang, Z. Fei, J. Qiu, and H. Gao, “Zonotopic fault detection for fuzzy systems with event-triggered transmission,” IEEE Trans. Fuzzy Systems, vol. 29, no. 12, pp. 3734–3742, Dec. 2021. doi: 10.1109/TFUZZ.2020.3026028
|
[46] |
S. Olarua, J. A. De Dona, M. M. Seronb, and F. Stoican, “Positive invariant sets for fault tolerant multisensor control schemes,” Int. J. Control, vol. 83, no. 12, pp. 2622–2640, Jul. 2010. doi: 10.1080/00207179.2010.535215
|
[47] |
L. Zou, Z. Wang, Q.-L. Han, and D. Zhou, “Ultimate boundedness control for networked systems with try-once-discard protocol and uniform quantization effects,” IEEE Trans. Autom. Control, vol. 62, no. 12, pp. 6582–6588, Dec. 2017. doi: 10.1109/TAC.2017.2713353
|
[48] |
M. Aitrami, X. Chen, and X. Zhou, “Discrete-time indefinite LQ control with state and control dependent noises,” J. Global Optimization, vol. 23, no. 3, pp. 245–265, Aug. 2002.
|
[49] |
C.-T. Chen, Linear Systems Theory and Design, 3rd ed. New York, USA: Oxford University Press, 1999.
|