A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
K. Zheng and Y. Zhang, “Nonlinear integral-ameliorated model for dynamic convex optimization with perturbance considered,” IEEE/CAA J. Autom. Sinica, 2024.
Citation: K. Zheng and Y. Zhang, “Nonlinear integral-ameliorated model for dynamic convex optimization with perturbance considered,” IEEE/CAA J. Autom. Sinica, 2024.

Nonlinear Integral-Ameliorated Model for Dynamic Convex Optimization With Perturbance Considered

Funds:  This work was supported by the National Natural Science Foundation of China (62376290)
More Information
  • This work presents a nonlinear integral-ameliorated model for handling dynamic optimization problems with affine constraints. They pose a challenge as their optimal solutions evolve with time. Traditional iteration-based methods that exactly solve the problem at each time instant, fail to precisely and real-time track the solution due to computational and communication bottlenecks. Our model, through rigorous theoretical analyses, is able to reduce the optimality gap (i.e., the difference between the model state and optimal solution) to zero in a finite time, and thus, track the solution online. Besides, perturbance is taken into account. We prove that under certain conditions, our model can totally tolerate an important kind of noise that we call “error-related noise”. In numerical experiments, compared with six existing methods, our model exhibits superior robustness when contaminated by the error-related noise. The key techniques in the model design involve employing the zeroing neural network to leverage time-derivative information, and introducing an integral term as well as the class $ {{{\mathrm{C}}}^0_\text{L}} $ functions to enhance convergence and noise resistance. Finally, we establish a model-free control framework for a surgical manipulator with the remote-center-of-motion constraint and compare the performances of the framework based on different models in simulations. The results indicate that our model achieves the best performance among various models employed within the framework.

     

  • loading
  • [1]
    A. H. Khan, X. Cao, S. Li, V. N. Katsikis, and L. Liao, “BAS-ADAM: An ADAM based approach to improve the performance of beetle antennae search optimizer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 461–471, Mar. 2020. doi: 10.1109/JAS.2020.1003048
    [2]
    J. Tang, G. Liu, and Q. Pan, “A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1627–1643, Oct. 2021. doi: 10.1109/JAS.2021.1004129
    [3]
    D. Chen, X. Li, and S. Li, “A novel convolutional neural network model based on beetle antennae search optimization algorithm for computerized tomography diagnosis,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 3, pp. 1418–1429, Mar. 2023. doi: 10.1109/TNNLS.2021.3105384
    [4]
    X. Cao, A. Francis, X. Pu, Z. Zhang, V. N. Katsikis, P. Stanimirovic, I. Brajevic, and S. Li, “A novel recurrent neural network based online portfolio analysis for high frequency trading,” Expert Syst. Appl., vol. 233, p. Art. no. 120934, Dec. 2023. doi: 10.1016/j.eswa.2023.120934
    [5]
    A. T. Khan, X. Cao, S. Li, B. Hu, and V. N. Katsikis, “Quantum beetle antennae search: A novel technique for the constrained portfolio optimization problem,” Sci. China Inf. Sci., vol. 64, p. Art. no. 152204, Mar. 2021. doi: 10.1007/s11432-020-2894-9
    [6]
    A. H. Khan, Z. Shao, S. Li, Q. Wang, and N. Guan, “Which is the best PID variant for pneumatic soft robots? An experimental study,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 451–560, Mar. 2020. doi: 10.1109/JAS.2020.1003045
    [7]
    Z. Li, S. Li, and X. Luo, “An overview of calibration technology of industrial robots,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 23–36, Jan. 2021. doi: 10.1109/JAS.2020.1003381
    [8]
    L. Jin, X. Zheng, and X. Luo, “Neural dynamics for distributed collaborative control of manipulators with time delays,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 854–863, May 2022. doi: 10.1109/JAS.2022.105446
    [9]
    Z. Zhang, Z. Li, and S. Yang, “A barrier varying-parameter dynamic learning network for solving time-varying quadratic programming problems with multiple constraints,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 8781–8792, Sept. 2022. doi: 10.1109/TCYB.2021.3051261
    [10]
    Y. Zhang and S. Li, “Kinematic control of serial manipulators under false data injection attack,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1000–1019, Apr. 2023.
    [11]
    S. Rahili and W. Ren, “Distributed continuous-time convex optimization with time-varying cost functions,” IEEE Trans. Automat. Contr., vol. 62, no. 4, pp. 1590–1605, Apr. 2017. doi: 10.1109/TAC.2016.2593899
    [12]
    Y. Yang, L. Liao, H. Yang, and S. Li, “An optimal control strategy for multi-UAVs target tracking and cooperative competition,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1931–1947, Dec. 2021. doi: 10.1109/JAS.2020.1003012
    [13]
    M. Liu, X. Zhang, M. Shang, and L. Jin, “Gradient-based differential $k$WTA network with application to competitive coordination of multiple robots,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1452–1463, Aug. 2022. doi: 10.1109/JAS.2022.105731
    [14]
    A. Bernstein, E. Dall'Anese, and A. Simonetto, “Online primal-dual methods with measurement feedback for time-varying convex optimization,” IEEE Trans. Signal Process., vol. 67, no. 8, pp. 1978–1991, Apr. 2019. doi: 10.1109/TSP.2019.2896112
    [15]
    M. Liu, S. Li, and L. Jin, “Modeling and analysis of Matthew effect under switching social networks via distributed competition,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1311–1314, Jul. 2022. doi: 10.1109/JAS.2022.105527
    [16]
    J. Lian and G. Hui, “Human evolutionary optimization algorithm,” Expert Syst. Appl., vol. 241, p. Art. no. 122638, May 2024. doi: 10.1016/j.eswa.2023.122638
    [17]
    Q. Pan, J. Tang, and H. Li, “Bacteria phototaxis optimizer,” Neural Comput. Appl., vol. 35, pp. 13433–13464, Mar. 2023. doi: 10.1007/s00521-023-08391-6
    [18]
    A. Simonetto, E. Dall'Anese, S. Paternain, G. Leus, and G. B. Giannakis, “Time-varying convex optimization: Time-structured algorithms and applications,” Proc. IEEE, vol. 108, no. 11, pp. 2032–2048, Nov. 2020. doi: 10.1109/JPROC.2020.3003156
    [19]
    M. Fazlyab, S. Paternain, V. M. Preciado, and A. Ribeiro, “Prediction-correction interior-point method for time-varying convex optimization,” IEEE Trans. Automat. Contr., vol. 63, no. 7, pp. 1973–1986, Jul. 2018. doi: 10.1109/TAC.2017.2760256
    [20]
    L. Jin, L. Wei, and S. Li, “Gradient-based differential neural-solution to time-dependent nonlinear optimization,” IEEE Trans. Automat. Contr., vol. 68, no. 1, pp. 620–627, Jan. 2023. doi: 10.1109/TAC.2022.3144135
    [21]
    A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A class of prediction-correction methods for time-varying convex optimization,” IEEE Trans. Signal Process., vol. 64, no. 17, pp. 4576–4591, Sept. 2016. doi: 10.1109/TSP.2016.2568161
    [22]
    A. Simonetto and E. Dall'Anese, “Prediction-correction algorithms for time-varying constrained optimization,” IEEE Trans. Signal Process., vol. 65, no. 20, pp. 5481–5494, Oct. 2017. doi: 10.1109/TSP.2017.2728498
    [23]
    Y. Zhang, G. Mu, and H. Zheng, “Link between and comparison and combination of Zhang neural network and quasi-Newton BFGS method for time-varying quadratic minimization,” IEEE Trans. Cybern., vol. 43, no. 2, pp. 490–503, Apr. 2013. doi: 10.1109/TSMCB.2012.2210038
    [24]
    E. Moulay and W. Perruquetti, “Finite time stability and stabilization of a class of continuous systems,” J. Math. Anal. Appl., vol. 323, no. 2, pp. 1430–1443, Nov. 2006. doi: 10.1016/j.jmaa.2005.11.046
    [25]
    L. Xiao, “A nonlinearly-activated neurodynamic model and its finite-time solution to equality-constrained quadratic optimization with nonstationary coefficients,” Appl. Soft Comput., vol. 40, pp. 252–259, Mar. 2016. doi: 10.1016/j.asoc.2015.11.023
    [26]
    B. Liao, Y. Wang, W. Li, C. Peng, and Q. Xiang, “Prescribed-time convergent and noise-tolerant Z-type neural dynamics for calculating time-dependent quadratic programming,” Neural. Comput. Appl., vol. 33, pp. 5327–5337, May 2021. doi: 10.1007/s00521-020-05356-x
    [27]
    L. Jin and Y. Zhang, “Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators,” IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 6978–6988, Nov. 2016. doi: 10.1109/TIE.2016.2590379
    [28]
    Z. Zhang, L. Ye, B. Chen, and Y. Luo, “An anti-interference dynamic integral neural network for solving the time-varying linear matrix equation with periodic noises,” Neurocomputing, vol. 534, pp. 29–44, May 2023. doi: 10.1016/j.neucom.2023.02.033
    [29]
    L. Xiao, K. Li, and M. Duan, “Computing time-varying quadratic optimization with finite-time convergence and noise tolerance: A unified framework for zeroing neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 11, pp. 3360–3369, Nov. 2019. doi: 10.1109/TNNLS.2019.2891252
    [30]
    J. Dai, L. Luo, L. Jia, P. Cao, J. Li, N. Krasnogor, and Y. Wang, “Modified noise-immune fuzzy neural network for solving the quadratic programming with equality constraint problem,” IEEE Trans. Neural Netw. Learn. Syst., to be published, doi: 10.1109/TNNLS.2023.3290030.
    [31]
    L. Zheng and Z. Zhang, “Time-varying quadratic-programming-based error redefinition neural network control and its application to mobile redundant manipulators,” IEEE Trans. Automat. Contr., vol. 67, no. 11, pp. 6151–6158, Nov. 2022. doi: 10.1109/TAC.2021.3128470
    [32]
    D. Chen and S. Li, “DRDNN: A robust model for time-variant nonlinear optimization under multiple equality and inequality constraints,” Neurocomputing, vol. 511, pp. 192–212, Oct. 2022.
    [33]
    T. M. Apostol, Mathematical Analysis. Boston: Addison-Wesley, 1981.
    [34]
    S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
    [35]
    S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, USA: SIAM, 1994.
    [36]
    E. Suli and D. F. Mayers, An Introduction to Numerical Analysis. Cambridge, UK: Cambridge University Press, 2003.
    [37]
    H. K. Khalil, Nonlinear Systems Third Edition. Upper Saddle River, USA: Prentice Hall, 2002.
    [38]
    L. Fridman, J. Moreno, and R. Iriarte, Sliding Modes after the First Decade of the 21st Century. Berlin, German: Springer, 2011.
    [39]
    A. S. Poznyak, Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques. Amsterdam, Netherlands: Elsevier, 2008.
    [40]
    W. Li, P. W. Y. Chiu, and Z. Li, “An accelerated finite-time convergent neural network for visual servoing of a flexible surgical endoscope with physical and RCM constraints,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 12, pp. 5272–5284, Dec. 2020. doi: 10.1109/TNNLS.2020.2965553
    [41]
    A. H. Khan, S. Li, and X. Cao, “Tracking control of redundant manipulator under active remote center-of-motion constraints: An RNN-based metaheuristic approach,” Sci. China Inf. Sci., vol. 64, Art. no. 132203, Feb. 2021. doi: 10.1007/s11432-019-2735-6
    [42]
    N. Aghakhani, M. Geravand, N. Shahriari, M. Vendittelli, and G. Oriolo, “Task control with remote center of motion constraint for minimally invasive robotic surgery,” in Proc. IEEE Int. Conf. Robot. Autom., May 2013, pp. 5807–5812.
    [43]
    D. Chen, Y. Zhang, and S. Li, “Tracking control of robot manipulators with unknown models: A Jacobian-matrix-adaption method,” IEEE Trans. Industr. Inform., vol. 14, no. 7, pp. 3044–3053, Jul. 2018. doi: 10.1109/TII.2017.2766455

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (32) PDF downloads(8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return