 Volume 3
							Issue 3
								
						 Volume 3
							Issue 3 
						IEEE/CAA Journal of Automatica Sinica
| Citation: | Cuihong Wang, Huanhuan Li and YangQuan Chen, "H∞ Output Feedback Control of Linear Time-invariant Fractional-order Systems over Finite Frequency Range," IEEE/CAA J. of Autom. Sinica, vol. 3, no. 3, pp. 304-310, 2016. | 
 
	                | [1] | Podlubny I. Fractional Differential Equations. New York: Academic Press, 1999. | 
| [2] | Matignon D. Stability results for fractional differential equations with applications to control processing. In: Proceedings of the 1996 IMACSSMC, Vol. 2. 1996. 963-968 | 
| [3] | Sabatier J, Farges C, Trigeassou J C. A stability test for noncommensurate fractional order systems. Systems and Control Letters, 2013, 62(9): 739-746 | 
| [4] | Sabatier J, Moze M, Farges C. LMI stability conditions for fractional order systems. Computers and Mathematics with Applications, 2010, 59(5): 1594-1609 | 
| [5] | Li Y, Chen Y Q, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45(8): 1965-1969 | 
| [6] | Ahn H S, Chen Y Q. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica, 2008, 44(11): 2985-2988 | 
| [7] | Ma Y D, Lu J G, Chen W D. Robust stability and stabilization of fractional order linear systems with positive real uncertainty. ISA Transactions, 2014, 53(2): 199-209 | 
| [8] | Liang S, Wei Y H, Pan J W, Gao Q, Wang Y. Bounded real lemmas for fractional order systems. International Journal of Automation and Computing, 2015, 12(2): 192-198 | 
| [9] | Farges C, Fadiga L, Sabatier J. H∞ analysis and control of commensurate fractional order systems. Mechatronics, 2013, 23(7): 772-780 | 
| [10] | Fadiga L, Farges C, Sabatier J, Santugini K. H∞ output feedback control of commensurate fractional order systems. In: Proceedings of the 2013 European Control Conference (ECC). Zurich: IEEE, 2013. 4538-4543 | 
| [11] | Shen J, Lam J. State feedback H∞ control of commensurate fractionalorder systems. International Journal of Systems Science, 2014, 45(3): 363-372 | 
| [12] | Rantzer A. On the Kalman-Yakubovich-Popov lemma. Systems and Control Letters, 1996, 28(1): 7-10 | 
| [13] | Najson F. On the Kalman-Yakubovich-Popov lemma for discrete-time positive linear systems: a novel simple proof and some related results. International Journal of Control, 2013, 86(10): 1813-1823 | 
| [14] | Sreeram V, Sahlan S. Improved results on frequency-weighted balanced truncation and error bounds. International Journal of Robust and Nonlinear Control, 2012, 22(11): 1195-1211 | 
| [15] | Stefanovski J. Kalman-Yakubovich-Popov lemma for descriptor systems. Systems and Control Letters, 2014, 74: 8-13 | 
| [16] | Iwasaki T, Hara S. Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control, 2005, 50(1): 41-59 | 
| [17] | Shen J, Lam J. Improved results on H∞ model reduction for continuoustime linear systems over finite frequency ranges. Automatica, 2015, 53: 79-84 | 
| [18] | Li X W, Gao H J. A heuristic approach to static output-feedback controller synthesis with restricted frequency-range specifications. IEEE Transactions on Automatic Control, 2014, 59(4): 1008-1014 | 
| [19] | Pipeleer G, Vandenberghe L. Generalized KYP lemma with real data. IEEE Transactions on Automatic Control, 2011, 56(12): 2942-2946 | 
| [20] | Gahinet P, Apkarian P. A linear matrix inequality approach to H∞ control. International Journal of Robust and Nonlinear Control, 1994, 4(4): 421-448 | 
| [21] | Cao Y Y, Lam J, Sun Y X. Static output feedback stabilization: an ILMI approach. Automatica, 1998, 34(12): 1641-1645 | 
| [22] | Shu Z, Lam J. An augmented system approach to static output-feedback stabilization with H∞ performance for continuous-time plants. International Journal of Robust and Nonlinear Control, 2009, 19(7): 768-785 |