IEEE/CAA Journal of Automatica Sinica
Citation: | Changchun Hua, Tong Zhang, Yafeng Li and Xinping Guan, "Robust Output Feedback Control for Fractional Order Nonlinear Systems with Time-varying Delays," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 477-482, Oct. 2016. |
[1] |
Podlubny I. Fractional Differential Equations:An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. San Diego:Academic Press, 1999.
|
[2] |
Pan I, Das S. Intelligent Fractional Order Systems and Control. Berlin Heidelberg:Springer, 2013.
|
[3] |
Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations, Volume 204(North-Holland Mathematics Studies). New York:Elsevier Science Inc., 2006.
|
[4] |
Lakshmikantham V, Leela S, Vasundhara Devi J. Theory of Fractional Dynamic Systems. Cambridge, UK:Cambridge Scientific Publishers, 2009.
|
[5] |
Diethelm K. The Analysis of Fractional Differential Equations. Berlin:Springer, 2010.
|
[6] |
Lakshmikantham V, Vatsala A S. Basic theory of fractional differential equations. Nonlinear Analysis:Theory, Methods and Applications, 2008, 69(8):2677-2682 doi: 10.1016/j.na.2007.08.042
|
[7] |
Matignon D. Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems Applications, 1996, 2:963-968 http://cn.bing.com/academic/profile?id=56786142&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α:the 0 << α << 1 case. IEEE Transactions on Automatic Control, 2010, 55(1):152-158 doi: 10.1109/TAC.2009.2033738
|
[9] |
Lu J G, Chen G R. Robust stability and stabilization of fractional-order interval systems:an LMI approach. IEEE Transactions on Automatic Control, 2009, 54(6):1294-1299 doi: 10.1109/TAC.2009.2013056
|
[10] |
Zhang X F, Liu L, Feng G, Wang Y Z. Asymptotical stabilization of fractional-order linear systems in triangular form. Automatica, 2013, 49(11):3315-3321 doi: 10.1016/j.automatica.2013.08.002
|
[11] |
Lim Y H, Oh K K, Ahn H S. Stability and stabilization of fractionalorder linear systems subject to input saturation. IEEE Transactions on Automatic Control, 2013, 58(4):1062-1067 doi: 10.1109/TAC.2012.2218064
|
[12] |
Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):2951-2957 doi: 10.1016/j.cnsns.2014.01.022
|
[13] |
Wen X J, Wu Z M, Lu J G. Stability analysis of a class of nonlinear fractional-order systems. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2008, 55(11):1178-1182 doi: 10.1109/TCSII.2008.2002571
|
[14] |
Delavari H, Baleanu D, Sadati J. Stability analysis of Caputo fractionalorder nonlinear systems revisited. Nonlinear Dynamics, 2012, 67(4):2433-2439 doi: 10.1007/s11071-011-0157-5
|
[15] |
Li Y, Chen Y Q, Podlubny I. Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized MittagLeffler stability. Computers and Mathematics with Applications, 2010, 59(5):1810-1821 doi: 10.1016/j.camwa.2009.08.019
|
[16] |
Hua C C, Guan X P, Shi P. Robust backstepping control for a class of time delayed systems. IEEE Transactions on Automatic Control, 2005, 50(6):894-899 doi: 10.1109/TAC.2005.849255
|
[17] |
Bonnet C, Partington J R. Coprime factorizations and stability of fractional differential systems. Systems and Control Letters, 2000, 41(3):167-174 doi: 10.1016/S0167-6911(00)00050-5
|
[18] |
Deng W H, Li C P, Lv J H. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, 2007, 48(4):409-416 doi: 10.1007/s11071-006-9094-0
|
[19] |
Kheirizad I, Tavazoei M S, Jalali A A. Stability criteria for a class of fractional order systems. Nonlinear Dynamics, 2010, 61(1-2):153-161 doi: 10.1007/s11071-009-9638-1
|
[20] |
Zhang F R, Li C P. Stability analysis of fractional differential systems with order lying in (1, 2). Advances in Difference Equations, 2011, 2011:Article ID 213485 http://cn.bing.com/academic/profile?id=2058317840&encoded=0&v=paper_preview&mkt=zh-cn
|
[21] |
Wen Y H, Zhou X F, Zhang Z X, Liu S. Lyapunov method for nonlinear fractional differential systems with delay. Nonlinear Dynamics, 2015, 82(1-2):1015-1025 doi: 10.1007/s11071-015-2214-y
|
[22] |
Yu W, Li T Z. Stability analysis of fractional-order nonlinear systems with delay. Mathematical Problems in Engineering, 2014, 2014(4):Article ID 301235 http://cn.bing.com/academic/profile?id=2033083367&encoded=0&v=paper_preview&mkt=zh-cn
|
[23] |
Wei Y H, Chen Y Q, Liang S, Wang Y. A novel algorithm on adaptive backstepping control of fractional order systems. Neurocomputing, 2015, 165:395-402 doi: 10.1016/j.neucom.2015.03.029
|
[24] |
Ding D S, Qi D L, Meng Y, Xu L. Adaptive Mittag-Leffler stabilization of commensurate fractional-order nonlinear systems. In:Proceedings of the 53rd IEEE Conference on Decision and Control (CDC). Los Angeles, CA:IEEE, 2014. 6920-6926
|
[25] |
Syta A, Litak G, Lenci S, Scheffler M. Chaotic vibrations of the duffing system with fractional damping. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2014, 24(1):013107 doi: 10.1063/1.4861942
|