A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
K. Liu, Y. Liu, Q. Peng, N. Cui, and C. Zhang, “Interpretable data-driven learning with fast ultrasonic detection for battery health estimation,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–3, Jan. 2025.
Citation: K. Liu, Y. Liu, Q. Peng, N. Cui, and C. Zhang, “Interpretable data-driven learning with fast ultrasonic detection for battery health estimation,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–3, Jan. 2025.

Interpretable Data-Driven Learning With Fast Ultrasonic Detection for Battery Health Estimation

More Information
  • loading
  • [1]
    Y. Wang, K. Li, et al., “Battery full life cycle management and health prognosis based on cloud service and broad learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1540–1542, 2022.
    [2]
    K. Liu, Z. Wei, C. Zhang, Y. Shang, R. Teodorescu, and Q.-L. Han, “Towards long lifetime battery: AI-based manufacturing and management,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1139–1165, 2022.
    [3]
    M. Chen, et al., “An overview of data-driven battery health estimation technology for battery management system,” Neurocomputing, vol. 532, no. 1, pp. 152–169, 2023.
    [4]
    G. Ma, Z. Wang, W. Liu, et al., “Estimating the state of health for lithium-ion batteries: A particle swarm optimization-assisted deep domain adaptation approach,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1530–1543, 2023.
    [5]
    Q. Xu, M. Wu, et al., “A hybrid ensemble deep learning approach for early prediction of battery remaining useful life,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 177–187, 2023.
    [6]
    K. Liu et al., “Knowledge-guided data-driven model with transfer concept for battery calendar ageing trajectory prediction,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 272–274, 2023.
    [7]
    K. Liu et al., “Explainable neural network for sensitivity analysis of lithium-ion battery smart production,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 9, pp. 1–10, 2024.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (20) PDF downloads(5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return