IEEE/CAA Journal of Automatica Sinica
Citation: | Sathiyaraj T. and Balasubramaniam P., "Controllability of Fractional Order Stochastic Differential Inclusions with Fractional Brownian Motion in Finite Dimensional Space," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 400-410, Oct. 2016. |
[1] |
Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York:Wiley, 1993.
|
[2] |
Oldham K B, Spanier J. The Fractional Calculus:Theory and Applications of Differentiation and Integration to Arbitrary Order. New York:Academic Press, 1974.
|
[3] |
Podlubny I. Fractional Differential Equations:An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of Their Applications. California:Academic Press, 1998.
|
[4] |
Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives:Theory and Applications. Amsterdam:Gordon and Breach Science Publisher, 1993.
|
[5] |
Sabatier J, Agrawal O P, Tenreiro Machado J A. Advances in Fractional Calculus. Netherlands:Springer, 2007.
|
[6] |
Monje C A, Chen Y, Vinagre B M, Xue D, Feliu Batlle V. FractionalOrder Systems and Controls:Fundamentals and Applications. London:Springer, 2010.
|
[7] |
Monje C A, Vinagre B M, Feliu V, Chen Y Q. Tuning and autotuning of fractional order controllers for industry applications. Control Engineering Practice, 2008, 16(7):798-812 doi: 10.1016/j.conengprac.2007.08.006
|
[8] |
Chikriy A A, Matichin I I. Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross. Journal of Automation and Information Sciences, 2008, 40(6):1-11 doi: 10.1615/JAutomatInfScien.v40.i6
|
[9] |
Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam:Elsevier Science Limited, 2006.
|
[10] |
Balachandran K, Kokila J. On the controllability of fractional dynamical systems. International Journal of Applied Mathematics and Computer Science, 2012, 22(3):523-531 http://cn.bing.com/academic/profile?id=1927279447&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
Sathiyaraj T, Balasubramaniam P. Controllability of nonlinear fractional neutral stochastic dynamical systems with Poisson jumps. Mathematical Analysis and its Applications. India:Springer, 2015. 429-438
|
[12] |
Balasubramaniam P, Ntouyas S K. Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space. Journal of Mathematical Analysis and Applications, 2006, 324(1):161-176 doi: 10.1016/j.jmaa.2005.12.005
|
[13] |
Mahmudov N I, Denker A. On controllability of linear stochastic systems. International Journal of Control, 2000, 73(2):144-151 doi: 10.1080/002071700219849
|
[14] |
Abbas S, Benchohra M. Fractional order Riemann-Liouville integral inclusions with two independent variables and multiple delay. Opuscula Mathematica, 2013, 33(2):209-222 doi: 10.7494/OpMath.2013.33.2.209
|
[15] |
Balasubramaniam P. Existence of solutions of functional stochastic differential inclusions. Tamkang Journal of Mathematics, 2002, 33(1):25-34 http://cn.bing.com/academic/profile?id=85196994&encoded=0&v=paper_preview&mkt=zh-cn
|
[16] |
Boufoussi B, Hajji S. Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Statistics & Probability Letters, 2012, 82(8):1549-1558 http://cn.bing.com/academic/profile?id=1988466183&encoded=0&v=paper_preview&mkt=zh-cn
|
[17] |
Caraballo T, Garrido-Atienza M J, Taniguchi T. The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Analysis:Theory, Methods & Applications, 2011, 74(11):3671-3684 http://cn.bing.com/academic/profile?id=1976029405&encoded=0&v=paper_preview&mkt=zh-cn
|
[18] |
Ahmed H M. Controllability of impulsive neutral stochastic differential equations with fractional Brownian motion. IMA Journal of Mathematical Control and Information, 2015, 32(4):781-794 http://cn.bing.com/academic/profile?id=2055366483&encoded=0&v=paper_preview&mkt=zh-cn
|
[19] |
Li K X, Peng J G. Laplace Transform and fractional differential equations. Applied Mathematics Letters, 2011, 24(12):2019-2023 doi: 10.1016/j.aml.2011.05.035
|
[20] |
Sakthivel R, Revathi P, Mahmudov N I. Asymptotic stability of fractional stochastic neutral differential equations with infinite delays. Abstract and Applied Analysis, 2013, 2013:Article ID 769257
|
[21] |
Zhou Y, Jiao F. Existence of mild solutions for fractional neutral evolution equations. Computers and Mathematics with Applications, 2010, 59(3):1063-1077 doi: 10.1016/j.camwa.2009.06.026
|
[22] |
Aubin J B, Cellina A. Differential Inclusions:Set-Valued Maps and Viability Theory. Berlin Heidelberg:Springer-Verlag, 1984.
|
[23] |
Górniewicz L. Topological Fixed Point Theory of Multivalued Mappings. Netherlands:Springer, 1999.
|
[24] |
Hu S C, Papageorgiou N S. Handbook of Multivalued Analysis:Volume ��:Applications. New York:Springer, 2013.
|
[25] |
Kisielewicz M. Differential Inclusions and Optimal Control. Netherlands:Springer, 1991.
|
[26] |
Lasota A, Opial Z. An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equation. Bulletin De Lcademie Polonaise Des Sciences-Série Des Sciences Mathématiques, Astronomiques Et Physiques, 1965, 13(11):781-786
|
[27] |
Castaing C, Valadier M. Convex Analysis and Measurable Multifunctions. Berlin Heidelberg:Springer, 1977.
|
[28] |
Bohnenblust H F, Karlin S. On a theorem of Ville, contributions to the theory of games. Annals of Mathematics Studies, 24. Princeton:Princeton University Press, 1950. 155-160
|
[29] |
Covitz H, Nadler S B. Multi-valued contraction mappings in generalized metric spaces. Israel Journal of Mathematics, 1970, 8(1):5-11 doi: 10.1007/BF02771543
|
[30] |
Herrmann R. Fractional Calculus:An Introduction for Physicists. London:World Scientific Publishing Company, 2011.
|