IEEE/CAA Journal of Automatica Sinica
Citation: | Haibin Duan, Pei Li and Yaxiang Yu, "A Predator-prey Particle Swarm Optimization Approach to Multiple UCAV Air Combat Modeled by Dynamic Game Theory," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 1, pp. 11-18, 2015. |
[1] |
Richards A, Bellingham J, Tillerson M, How J. Coordination and control of multiple UAVs. In:Proceedings of the 2002 AIAA Guidance, Navigation, and Control Conference. Monterey, CA:AIAA, 2002. 145-146
|
[2] |
Alighanbari M, Kuwata Y, How J P. Coordination and control of multiple UAVs with timing constraints and loitering. In:Proceedings of the 2003 American Control Conference. Denver, Colorado:IEEE, 2003. 5311-5316
|
[3] |
Li C S, Wang Y Z. Protocol design for output consensus of portcontrolled Hamiltonian multi-agent systems. Acta Automatica Sinica, 2014, 40(3):415-422
|
[4] |
Duan H, Li P. Bio-inspired Computation in Unmanned Aerial Vehicles. Berlin:Springer-Verlag, 2014. 143-181
|
[5] |
Duan H, Shao S, Su B, Zhang L. New development thoughts on the bioinspired intelligence based control for unmanned combat aerial vehicle. Science China Technological Sciences, 2010, 53(8):2025-2031
|
[6] |
Chi P, Chen Z J, Zhou R. Autonomous decision-making of UAV based on extended situation assessment. In:Proceedings of the 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit. Colorado, USA:AIAA, 2006.
|
[7] |
Ruz J J, Arelo O, Pajares G, de la Cruz J M. Decision making among alternative routes for uavs in dynamic environments. In:Proceedings of the 2007 IEEE Conference on Emerging Technologies and Factory Automation. Patras:IEEE, 2007. 997-1004
|
[8] |
Jung S, Ariyur K B. Enabling operational autonomy for unmanned aerial vehicles with scalability. Journal of Aerospace Information Systems, 2013, 10(11):516-529
|
[9] |
Berger J, Boukhtouta A, Benmoussa A, Kettani O. A new mixed-integer linear programming model for rescue path planning in uncertain adversarial environment. Computers & Operations Research, 2012, 39(12):3420-3430
|
[10] |
Duan H B, Liu S. Unmanned air/ground vehicles heterogeneous cooperative techniques:current status and prospects. Science China Technological Sciences, 2010, 53(5):1349-1355
|
[11] |
Cruz Jr J B, Simaan M A, Gacic A, Jiang H, Letelliier B, Li M, Liu Y. Game-theoretic modeling and control of a military air operation. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4):1393-1405
|
[12] |
Dixon W. Optimal adaptive control and differential games by reinforcement learning principles. Journal of Guidance, Control, and Dynamics, 2014, 37(3):1048-1049
|
[13] |
Semsar-Kazerooni E, Khorasani K. Multi-agent team cooperation:a game theory approach. Automatica, 2009, 45(10):2205-2213
|
[14] |
Gu D. A game theory approach to target tracking in sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2011, 41(1):2-13
|
[15] |
Duan H, Wei X, Dong Z. Multiple UCAVs cooperative air combat simulation platform based on PSO, ACO, and game theory. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(11):12-19
|
[16] |
Turetsky V, Shinar J. Missile guidance laws based on pursuit-evasion game formulations. Automatica, 2003, 39(4):607-618
|
[17] |
Porter R, Nudelman E, Shoham Y. Simple search methods for finding a Nash equilibrium. Games and Economic Behavior, 2008, 63(2):642-662
|
[18] |
Chen X, Deng X, Teng S-H. Settling the complexity of computing twoplayer Nash equilibria. Journal of the ACM, 2009, 56(3):Article No. 14
|
[19] |
Kennedy J, Eberhart R. Particle swarm optimization. In:Proceedings of the 1st IEEE International Conference on Neural Networks. Perth, Australia:IEEE, 1995. 1942-1948
|
[20] |
Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In:Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya:IEEE, 1995. 39-43
|
[21] |
Higashitani M, Ishigame A, Yasuda K. Particle swarm optimization considering the concept of predator-prey behavior. In:Proceedings of the 2006 IEEE Congress on Evolutionary Computation. Vancouver, BC, Canada:IEEE, 2006. 434-437
|
[22] |
Liu F, Duan H B, Deng Y M. A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image matching. Optik-International Journal for Light and Electron Optics, 2012, 123(21):1955-1960
|
[23] |
Edison E, Shima T. Genetic algorithm for cooperative UAV task assignment and path optimization. In:Proceedings of the 2008 AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, Hawaii:AIAA, 2008. 340-356
|
[24] |
Duan H, Luo Q, Shi Y, Ma G. Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration. IEEE Computational Intelligence Magazine, 2013, 8(3):16-27
|
[25] |
Liu G, Lao S Y, Tan D F, Zhou Z C. Research status and progress on anti-ship missile path planning. Acta Automatica Sinica, 2013, 39(4):347-359
|
[26] |
Duan H B, Yu Y X, Zhao Z Y. Parameters identification of UCAV flight control system based on predator-prey particle swarm optimization. Science China Information Sciences, 2013, 56(1):1-12
|
[27] |
Duan H, Li S, Shi Y. Predator-prey based brain storm optimization for DC brushless motor. IEEE Transactions on Magnetics, 2013, 49(10):5336-5340
|
[28] |
Pan F, Li X T, Zhou Q, Li W X, Gao Q. Analysis of standard particle swarm optimization algorithm based on Markov chain. Acta Automatica Sinica, 2013, 39(4):381-389
|
[29] |
Nash J F. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the United States of America, 1950, 36(1):48-49
|
[30] |
Yu Qian, Wang Xian-Jia. Evolutionary algorithm for solving Nash equilibrium based on particle swarm optimization. Journal of Wuhan University (Natural Science Edition), 2006, 52(1):25-29(in Chinese)
|