Citation: | Z.-X. Li, Y.-L. Wang, and F. Wang, “DI-YOLOv5: An improved dual-wavelet-based YOLOv5 for dense small object detection,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 2, pp. 1–3, Mar. 2024. |
[1] |
G. Jocher, A. Chaurasia, A. Stoken, et al., “YOLOv5 release v7.0,” [Online], https://github.com/ultralytics/yolov5, 2022.
|
[2] |
A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” in Proc. Advances in Neural Information Processing Systems, Long Beach, USA, 2017, pp. 5998–6008.
|
[3] |
D. Li, Y. Tian, and J. Li, “SODFormer: streaming object detection with Transformer using events and frames,”IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 45, no. 11, pp. 14020–14037, 2023. doi: 10.1109/TPAMI.2023.3298925
|
[4] |
T. Sun, C. Wang, H. Dong, et al., “A novel parameter-optimized recurrent attention network for pipeline leakage detection,”IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1064–1076, 2023. doi: 10.1109/JAS.2023.123180
|
[5] |
W. Mao, G. Wang, L. Kou, et al., “Deep domain-adversarial anomaly detection with one-class transfer learning,”IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 524–546, 2023. doi: 10.1109/JAS.2023.123228
|
[6] |
G. Cheng, X. Yuan, X. Yao, et al., “Towards large-scale small object detection: survey and benchmarks,”IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 45, no. 11, pp. 13467–13488, 2023.
|
[7] |
V. Chalavadi, P. Jeripothula, R. Datla, et al., “mSODANet: A network for multi-scale object detection in aerial images using hierarchical dilated convolutions,”Pattern Recognition, vol. 126, pp. 108548, 2022. doi: 10.1016/j.patcog.2022.108548
|
[8] |
L. Cui, P. Lv, X. Jiang, et al., “Context-aware block net for small object detection,”IEEE Trans. Cybern., vol. 52, no. 4, pp. 2300–2313, 2022. doi: 10.1109/TCYB.2020.3004636
|
[9] |
F. Cotter, “Uses of complex wavelets in deep convolutional neural networks,” Doctoral Dissertation, University of Cambridge, Cambridge. UK, 2019, https://doi.org/10.17863/CAM.53748.
|
[10] |
Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for efficient mobile network design,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Nashville, USA, 2021, pp. 13713–13722.
|
[11] |
S. Ren, K. He, R. Girshick, et al., “Faster R-CNN: towards real-time object detection with region proposal networks,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.
|
[12] |
W. Liu, D. Anguelov, D. Erhan, et al., “SSD: Single shot multibox detector,” in Proc. European Conf. Computer Vision, Amsterdam, Netherlands, 2016, pp. 21–37.
|
[13] |
J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv preprint arXiv: 1804.02767, 2018.
|
[14] |
G. Jocher, A. Chaurasia, Q. Laughing, et al., “YOLOv8 release v8.1,” [Online], https://github.com/ultralytics/ultralytics, 2023.
|