Citation: | Y.-L. Fan, C.-K. Zhang, and Y. He, “Stability and stabilization of sampled-data based LFC for power systems: A data-driven method,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 1–3, Jan. 2025. |
[1] |
H. Bevrani, Robust Power System Frequency Control. New York, USA: Springer, 2014.
|
[2] |
X. C. Shang-Guan, Y. He, C. Zhang, L. Jiang, J. W. Spencer, and M. Wu, “Sampled-data based discrete and fast load frequency control for power systems with wind power,” Appl. Energy, vol. 259, p. 114202, Feb. 2020. doi: 10.1016/j.apenergy.2019.114202
|
[3] |
J. Xia, X. Guo, J. H. Park, G. Chen, and X. Xie, “Predictor-based load frequency control for large-scale networked control power systems,” IEEE Trans. Power Syst., vol. 39, no. 5, pp. 6263–6276, Sept. 2024. doi: 10.1109/TPWRS.2024.3351724
|
[4] |
H. Luo, I. A. Hiskens, and Z. Hu, “Stability analysis of load frequency control systems with sampling and transmission delay,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 3603–3615, Sept. 2020. doi: 10.1109/TPWRS.2020.2980883
|
[5] |
C. Lin, B. Hu, C. Shao, et al., “Delay-dependent optimal load frequency control for sampling systems with demand response,” IEEE Trans. Power Syst., vol. 37, no. 6, pp. 4310–4324, Nov. 2022. doi: 10.1109/TPWRS.2022.3154429
|
[6] |
H. Luo and Z. Hu, “Stability analysis of sampled-data load frequency control systems with multiple delays,” IEEE Trans. Control Syst. Technol., vol. 30, no. 1, pp. 434–442, Jan. 2022. doi: 10.1109/TCST.2021.3061556
|
[7] |
X. Chen, M. Zhang, Z. Wu, L. Wu, and X. Guan, “Model-free load frequency control of nonlinear power systems based on deep reinforcement learning,” IEEE Trans. Ind. Informat., vol. 20, no. 4, pp. 6825–6833, Apr. 2024. doi: 10.1109/TII.2024.3353934
|
[8] |
I. Markovsky and F. Dörfler. “Behavioral systems theory in data-driven analysis, signal processing, and control,” Annu. Rev. Control, vol. 52, pp. 42–64, 2021. doi: 10.1016/j.arcontrol.2021.09.005
|
[9] |
J. Berberich, S. Wildhagen, M. Hertneck, and F. Allgöwer, “Data driven analysis and control of continuous-time systems under aperiodic sampling,” IFAC-PapersOnLine, vol. 54, no. 7, pp. 210–215, Jul. 2021. doi: 10.1016/j.ifacol.2021.08.360
|
[10] |
H.-B. Zeng, X.-G. Liu, and W. Wang, “A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems,” Appl. Math. Comput., vol. 354, pp. 1–8, Aug. 2019. doi: 10.1016/j.cam.2019.01.001
|
[11] |
H. J. van Waarde, M. K. Camlibel, and M. Mesbahi, “From noisy data to feedback controllers: Nonconservative design via a matrix S-lemma,” IEEE Trans. Autom. Control, vol. 67, no. 1, pp. 162–175, Jan. 2022. doi: 10.1109/TAC.2020.3047577
|