IEEE/CAA Journal of Automatica Sinica
Citation: | Feng Zhao, Chenghui Zhang and Bo Sun, "Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 385-393, Oct. 2016. |
[1] |
Bischi A, Taccari L, Martelli E, Amaldi E, Manzolini G, Silva P, Campanari S, Macchi E. A detailed MILP optimization model for combined cooling, heat and power system operation planning. Energy, 2014, 74:12-26 doi: 10.1016/j.energy.2014.02.042
|
[2] |
Jing You-Yin, Bai He, Zhang Jian-Liang. Multi-objective optimization design and operation strategy analysis of a solar combined cooling heating and power system. Proceedings of the CSEE, 2012, 32(20):82-87(in Chinese) http://cn.bing.com/academic/profile?id=2363164050&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
Wang Cheng-Shan, Hong Bo-Wen, Guo Li, Zhang De-Ju, Liu Wen-Jian. A general modeling method for optimal dispatch of combined cooling, heating and power microgrid. Proceedings of the CSEE, 2013, 33(31):26-33(in Chinese)
|
[4] |
Zhou Ren-Jun, Li Shao-Jin, Chen Rui-Xian, Li Hong-Ying, Yang YuWei, Chen Yun. Combined cool and heat and power multi-objective scheduling considering carbon emissions trading using algorithm of fuzzy self-correction particle swarm optimization. Proceedings of the CSEE, 2014, 34(34):6119-6126(in Chinese) http://en.cnki.com.cn/article_en/cjfdtotal-zgdc201434013.htm
|
[5] |
Zhou Ren-Jun, Ran Xiao-Hong, Mao Fa-Long, Fu Jing-Qian, Li XingLang, Lin Lv-Hao. Energy-saving coordinated optimal dispatch of distributed combined cool, heat and power supply. Power System Technology, 2012, 36(6):8-14(in Chinese) http://cn.bing.com/academic/profile?id=2380238033&encoded=0&v=paper_preview&mkt=zh-cn
|
[6] |
Jing Y Y, Bai H, Wang J J. Multi-objective optimization design and operation strategy analysis of BCHP system based on life cycle assessment. Energy, 2012, 37(1):405-416 doi: 10.1016/j.energy.2011.11.014
|
[7] |
Wang J J, Yang Y, Mao T Z, Sui J, Jin H G. Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system. Applied Energy, 2015, 146:38-52 doi: 10.1016/j.apenergy.2015.02.056
|
[8] |
Facci A L, Andreassi L, Ubertini S. Optimization of CHCP (combined heat power and cooling) systems operation strategy using dynamic programming. Energy, 2014, 66:387-400 doi: 10.1016/j.energy.2013.12.069
|
[9] |
Shaneb O A, Taylor P C, Coates G. Optimal online operation of residential μCHP systems using linear programming. Energy and Buildings, 2012, 44:17-25 doi: 10.1016/j.enbuild.2011.10.003
|
[10] |
Qin C K, Tang J X, Zhang Y. An efficient algorithm for CCHP system sizing and an operational optimization model based on LP. Journal of Natural Gas Science and Engineering, 2015, 25:189-196 doi: 10.1016/j.jngse.2015.05.001
|
[11] |
Ran Xiao-Hong, Zhou Ren-Jun, Li Xiang-Hua, Zhang Bin. Environmental economic dispatch considering equal emission performance coefficient for CCHP. Electric Power Automation Equipment, 2013, 33(9):94-99(in Chinese) http://cn.bing.com/academic/profile?id=2356629550&encoded=0&v=paper_preview&mkt=zh-cn
|
[12] |
Xiong Yan, Wu Jie-Kang, Wang Qiang, Mao Xiao-Ming. An optimization coordination model and solution for combined cooling, heating and electric power systems with complimentary generation of wind, PV, gas and energy storage. Proceedings of the CSEE, 2015, 35(14):3616-3625(in Chinese)
|
[13] |
Hua M Q, Cho H. A probability constrained multi-objective optimization model for CCHP system operation decision support. Applied Energy, 2014, 116:230-242 doi: 10.1016/j.apenergy.2013.11.065
|
[14] |
Fang F, Wang Q H, Shi Y. A novel optimal operational strategy for the CCHP system based on two operating modes. IEEE Transactions on Power Systems, 2012, 27(2):1032-1041 doi: 10.1109/TPWRS.2011.2175490
|
[15] |
Wang J J, Sui J, Jin H G. An improved operation strategy of combined cooling heating and power system following electrical load. Energy, 2015, 85:654-666
|
[16] |
Liu M X, Shi Y, Fang F. A new operation strategy for CCHP systems with hybrid chillers. Applied Energy, 2012, 95:164-173
|
[17] |
Zheng C Y, Wu J Y, Zhai X Q. A novel operation strategy for CCHP systems based on minimum distance. Applied Energy, 2014, 128:325-335
|
[18] |
Wu J Y, Wang J L, Li S. Multi-objective optimal operation strategy study of micro-CCHP system. Energy, 2012, 48(1):472-483 doi: 10.1016/j.energy.2012.10.013
|
[19] |
Liu Wen-Ying, Xie Chang, Wen Jing, Wang Jia-Ming, Wang Wei-Zhou. Optimization of transmission network maintenance scheduling based on niche multi-objective particle swarm algorithm. Proceedings of the CSEE, 2013, 33(4):141-148(in Chinese)
|
[20] |
Han Liang, Wang Shou-Xiang, Zhao Ge. Optimal planning of distributed generators based on combination of interval TOPSIS method and genetic algorithm. Automation of Electric Power systems, 2013, 37(24):37-42(in Chinese) http://cn.bing.com/academic/profile?id=2351519838&encoded=0&v=paper_preview&mkt=zh-cn
|