IEEE/CAA Journal of Automatica Sinica
Citation: | Qiming Zhao, Hao Xu and Sarangapani Jagannathan, "Near Optimal Output Feedback Control of Nonlinear Discrete-time Systems Based on Reinforcement Neural Network Learning," IEEE/CAA J. of Autom. Sinica, vol. 1, no. 4, pp. 372-384, 2014. |
[1] |
Kirk D. Optimal Control Theory: An Introduction. New Jersey: Prentice-Hall, 1970.
|
[2] |
Lewis F L, Syrmos V L. Optimal Control (Second edition). New York:Wiley, 1995.
|
[3] |
Bradtke S J, Ydstie B E, Barto A G. Adaptive linear quadratic controlusing policy iteration. In: Proceedings of the 1994 American ControlConference. Baltimore, MD, USA: IEEE, 1994. 3475-3479
|
[4] |
Abu-Khalaf M, Lewis F L. Nearly optimal control laws for nonlinearsystems with saturating actuators using a neural network HJB approach.Automatica, 2005, 41(5): 77-79
|
[5] |
Xu H, Jagannathan S, Lewis F L. Stochastic optimal control of unknownnetworked control systems in the presence of random delays and packetlosses. Automatica, 2012, 48(6): 1017-1030
|
[6] |
Xu H, Jagannathan S. Stochastic optimal controller design for uncertainnonlinear networked control system via neuro dynamic programming.IEEE Transactions on Neural Networks and Learning Systems, 2013,24(3): 471-484
|
[7] |
Dierks T, Jagannathan S. Online optimal control of affine nonlineardiscrete-time systems with unknown internal dynamics by using timebasedpolicy update. IEEE Transactions on Neural Networks and LearningSystems, 2012, 23(7): 1118-1129
|
[8] |
Chen Z, Jagannathan S. Generalized Hamilton-Jacobi-Bellman formulationbased neural network control of affine nonlinear discrete-timesystems. IEEE Transactions on Neural Networks, 2008, 19(1): 90-106
|
[9] |
Slotine J E, Li W. Applied Nonlinear Control. Englewood Cliffs, NJ:Prentice-Hall, 1991.
|
[10] |
Khalil H K, Laurent P. High-gain observers in nonlinear feedbackcontrol. International Journal of Robust and Nonlinear Control, 2014,24(6): 993-1015
|
[11] |
Beard R. Improving the Closed-Loop Performance of Nonlinear Systems[Ph. D. dissertation], Rensselaer Polytechnic Institute, USA, 1995.
|
[12] |
Cheng T, Lewis F L, Abu-Khalaf M. A neural network solution forfixed-final-time optimal control of nonlinear systems. Automatica, 2007,43(3): 482-490
|
[13] |
Heydari A, Balakrishan S N. Finite-horizon input-constrained nonlinearoptimal control using single network adaptive critics. IEEE Transactionson Neural Networks and Learning Systems, 2013, 24(1): 145-157
|
[14] |
Wang F Y, Jin N, Liu D R, Wei Q L. Adaptive dynamic programmingfor finite-horizon optimal control of discrete-time nonlinear systemswith ε-error bound. IEEE Transactions on Neural Networks, 2011, 22(1):24-36
|
[15] |
Al-Tamimi A, Lewis F L, Abu-Khalaf M. Discrete-time nonlinearHJB solution using approximate dynamic programming: convergenceproof. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetic, 2008, 38(4): 943-949
|
[16] |
Narendra K S, Parthasarathy K. Identification and control of dynamicalsystems using neural networks. IEEE Transactions on Neural Networks,1990, 1(1): 4-27
|
[17] |
Sarangapani J. Neural Network Control of Nonlinear Discrete-TimeSystems. Boca Raton, FL: CRC Press, 2006.
|
[18] |
Yu W. Nonlinear system identification using discrete-time recurrentneural networks with stable learning algorithms. Information Sciences,2004, 158: 131-147
|
[19] |
Zhang X, Zhang H G, Sun Q Y, Luo Y H. Adaptive dynamic programmingbased optimal control of unknown nonaffine nonlinear discretetimesystems with proof of convergence. Neurocomputing, 2012, 91:48-55
|
[20] |
Vance J, Jagannathan S. Discrete-time neural network output feedbackcontrol of nonlinear discrete-time systems in non-strict form. Automatica,2008, 44(4): 1020-1027
|
[21] |
Si J, Barto A G, Powell W B, Wunsch D. Handbook of Learningand Approximate Dynamic Programming. Hoboken: Wiley-IEEE Press,2004.
|