Citation: | B. Lu, Q. Miao, Y. Liu, T. Tamir, H. Zhao, X. Zhang, Y. Lv, and F.-Y. Wang, “A diffusion model for traffic data imputation,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 1–12, Mar. 2025. |
[1] |
D. Xu, H. Peng, C. Wei, X. Shang, and H. Li, “Traffic state data imputation: An efficient generating method based on the graph aggregator,” IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 8, pp. 13084–13093, 2022. doi: 10.1109/TITS.2021.3119638
|
[2] |
M. Kantardzic, “Data mining: Concepts, models, methods, and algorithms,” Technometrics, vol. 45, no. 3, p. 277, 2003.
|
[3] |
Q. Miao, Y. Lv, M. Huang, X. Wang, and F.-Y. Wang, “Parallel learning: Overview and perspective for computational learning across syn2real and sim2real,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 603–631, 2023. doi: 10.1109/JAS.2023.123375
|
[4] |
W. Zou, Y. Sun, Y. Zhou, Q. Lu, Y. Nie, T. Sun, and L. Peng, “Limited sensing and deep data mining: A new exploration of developing city-wide parking guidance systems,” IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 1, pp. 198–215, 2022. doi: 10.1109/MITS.2020.2970185
|
[5] |
C. Zhao, Y. Lv, J. Jin, Y. Tian, J. Wang, and F.-Y. Wang, “Decast in transverse for parallel intelligent transportation systems and smart cities: Three decades and beyond,” IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 6, pp. 6–17, 2022. doi: 10.1109/MITS.2022.3199557
|
[6] |
S. Feng, Z. Song, Z. Li, Y. Zhang, and L. Li, “Robust platoon control in mixed traffic flow based on tube model predictive control,” IEEE Trans. Intelligent Vehicles, vol. 6, no. 4, pp. 711–722, 2021. doi: 10.1109/TIV.2021.3060626
|
[7] |
X. Ge, Q.-L. Han, X.-M. Zhang, and D. Ding, “Communication resource-efficient vehicle platooning control with various spacing policies,” IEEE/CAA J. Autom. Sinica, 2023.
|
[8] |
J. Zhan, Z. Ma, and L. Zhang, “Data-driven modeling and distributed predictive control of mixed vehicle platoons,” IEEE Trans. Intelligent Vehicles, vol. 8, no. 1, pp. 572–582, 2023. doi: 10.1109/TIV.2022.3168591
|
[9] |
J. Wang, J. Wang, and Q.-L. Han, “Receding-horizon trajectory planning for under-actuated autonomous vehicles based on collaborative neurodynamic optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 1909–1923, 2022. doi: 10.1109/JAS.2022.105524
|
[10] |
V. G. Stepanyants and A. Y. Romanov, “A survey of integrated simulation environments for connected automated vehicles: Requirements, tools, and architecture,” IEEE Intelligent Transportation Systems Magazine, 2023.
|
[11] |
A. T. Hudak, N. L. Crookston, J. S. Evans, D. E. Hall, and M. J. Falkowski, “Nearest neighbor imputation of species-level, plot-scale forest structure attributes from lidar data,” Remote Sensing of Environment, vol. 112, no. 5, pp. 2232–2245, 2008. doi: 10.1016/j.rse.2007.10.009
|
[12] |
D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative matrix factorization for data representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1548–1560, 2011. doi: 10.1109/TPAMI.2010.231
|
[13] |
J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing values in visual data,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 208–220, 2012.
|
[14] |
X. Chen, M. Lei, N. Saunier, and L. Sun, “Low-rank autoregressive tensor completion for spatiotemporal traffic data imputation,” IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 8, pp. 12301–12310, 2021.
|
[15] |
X. Chen, Z. He, and J. Wang, “Spatial-temporal traffic speed patterns discovery and incomplete data recovery via SVD-combined tensor decomposition,” Transportation Research Part C: Emerging Technologies, vol. 86, pp. 59–77, 2018. doi: 10.1016/j.trc.2017.10.023
|
[16] |
T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2016, pp. 785–794.
|
[17] |
S. Harford, F. Karim, and H. Darabi, “Generating adversarial samples on multivariate time series using variational autoencoders,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1523–1538, 2021. doi: 10.1109/JAS.2021.1004108
|
[18] |
T. Lintonen and T. Räty, “Self-learning of multivariate time series using perceptually important points,” IEEE/CAA J. Autom. Sinica, vol. 6, p. 1318, 2019. doi: 10.1109/JAS.2019.1911777
|
[19] |
J. Liu, F. Zheng, X. Liu, and G. Guo, “Dynamic traffic flow prediction based on long-short term memory framework with feature organization,” IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 6, pp. 221–236, 2022. doi: 10.1109/MITS.2021.3116156
|
[20] |
Z. Li, Y. Li, and L. Li, “A comparison of detrending models and multiregime models for traffic flow prediction,” IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 4, pp. 34–44, 2014. doi: 10.1109/MITS.2014.2332591
|
[21] |
I. Lana, J. Del Ser, M. Velez, and E. I. Vlahogianni, “Road traffic forecasting: Recent advances and new challenges,” IEEE Intelligent Transportation Systems Magazine, vol. 10, no. 2, pp. 93–109, 2018. doi: 10.1109/MITS.2018.2806634
|
[22] |
S. Choi, H. Shon, and K. Huh, “Interpretable vehicle speed estimation based on dual attention network for 4WD off-road vehicles,” IEEE Trans. Intelligent Vehicles, 2023.
|
[23] |
Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction with big data: A deep learning approach,” IEEE Trans. Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.
|
[24] |
Y. Duan, Y. Lv, Y.-L. Liu, and F.-Y. Wang, “An efficient realization of deep learning for traffic data imputation,” Transportation Research Part C: Emerging Technologies, vol. 72, pp. 168–181, 2016. doi: 10.1016/j.trc.2016.09.015
|
[25] |
J. Xi, F. Zhu, P. Ye, Y. Lv, H. Tang, and F.-Y. Wang, “HMDRL: Hierarchical mixed deep reinforcement learning to balance vehicle supply and demand,” IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 11, pp. 21861–21872, 2022. doi: 10.1109/TITS.2022.3191752
|
[26] |
J. Xi, F. Zhu, Y. Chen, Y. Lv, C. Tan, and F. Wang, “DDRL: A decentralized deep reinforcement learning method for vehicle repositioning,” in Proc. IEEE Int. Intelligent Transportation Systems Conf., 2021, pp. 3984–3989.
|
[27] |
J. Pan, C. Li, Y. Tang, W. Li, and X. Li, “Energy consumption prediction of a CNC machining process with incomplete data,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 987–1000, 2021. doi: 10.1109/JAS.2021.1003970
|
[28] |
W. Du, B. Li, J. Chen, Y. Lv, and Y. Li, “A spatiotemporal hybrid model for airspace complexity prediction,” IEEE Intelligent Transportation Systems Magazine, vol. 15, no. 2, pp. 217–224, 2023. doi: 10.1109/MITS.2022.3204099
|
[29] |
X. Jiang, X. Kong, and Z. Ge, “Augmented industrial data-driven modeling under the curse of dimensionality,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1445–1461, 2023. doi: 10.1109/JAS.2023.123396
|
[30] |
J. Yoon, W. R. Zame, and M. van der Schaar, “Estimating missing data in temporal data streams using multi-directional recurrent neural networks,” IEEE Trans. Biomedical Engineering, vol. 66, no. 5, pp. 1477–1490, 2019. doi: 10.1109/TBME.2018.2874712
|
[31] |
X. Yao, Y. Gao, D. Zhu, E. Manley, J. Wang, and Y. Liu, “Spatial origindestination flow imputation using graph convolutional networks,” IEEE Trans. Intelligent Transportation Systems, vol. 22, no. 12, pp. 7474–7484, 2021. doi: 10.1109/TITS.2020.3003310
|
[32] |
Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep spatial-temporal graph modeling,” arXiv preprint arXiv: 1906.00121, 2019.
|
[33] |
Y. Liu, R. Yu, S. Zheng, E. Zhan, and Y. Yue, “NAOMI: Nonautoregressive multiresolution sequence imputation,” Advances in Neural Information Processing Systems, vol. 32, 2019.
|
[34] |
M. Morsali, E. Frisk, and J. Åslund, “Spatio-temporal planning in ˚ multi-vehicle scenarios for autonomous vehicle using support vector machines,” IEEE Trans. Intelligent Vehicles, vol. 6, no. 4, pp. 611–621, 2021. doi: 10.1109/TIV.2020.3042087
|
[35] |
W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “BRITS: Bidirectional recurrent imputation for time series,” Advances in Neural Information Processing Systems, vol. 31, 2018.
|
[36] |
Q. Suo, W. Zhong, G. Xun, J. Sun, C. Chen, and A. Zhang, “GLIMA: Global and local time series imputation with multi-directional attention learning,” in Proc. IEEE Int. Conf. Big Data, 2020, pp. 798–807.
|
[37] |
Z. Wei, H. Zhao, Z. Li, X. Bu, Y. Chen, X. Zhang, Y. Lv, and F.-Y. Wang, “STGSA: A novel spatial-temporal graph synchronous aggregation model for traffic prediction,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 226–238, 2023. doi: 10.1109/JAS.2023.123033
|
[38] |
W. Du, D. Côté, and Y. Liu, “SAITS: Self-attention-based imputation x for time series,” Expert Systems With Applications, vol. 219, p. 119619, 2023. doi: 10.1016/j.eswa.2023.119619
|
[39] |
Y. Liu, B. Tian, Y. Lv, L. Li, and F.-Y. Wang, “Point cloud classification using content-based transformer via clustering in feature space,” IEEE/CAA J. Autom. Sinica, vol. 10, p. 1, 2023. doi: 10.1109/JAS.2023.123003
|
[40] |
Y. Tashiro, J. Song, Y. Song, and S. Ermon, “CSDI: Conditional scorebased diffusion models for probabilistic time series imputation,” Advances in Neural Information Processing Systems, vol. 34, pp. 24804–24816, 2021.
|
[41] |
J. M. L. Alcaraz and N. Strodthoff, “Diffusion-based time series imputation and forecasting with structured state space models,” arXiv preprint arXiv: 2208.09399, 2022.
|
[42] |
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communi. the ACM, vol. 63, no. 11, pp. 139–144, 2020. doi: 10.1145/3422622
|
[43] |
Y. Luo, X. Cai, Y. Zhang, J. Xu, et al., “Multivariate time series imputation with generative adversarial networks,” Advances in Neural Information Processing Systems, vol. 31, 2018.
|
[44] |
Y. Lv, Y. Chen, L. Li, and F.-Y. Wang, “Generative adversarial networks for parallel transportation systems,” IEEE Intelligent Transportation Systems Magazine, vol. 10, no. 3, pp. 4–10, 2018. doi: 10.1109/MITS.2018.2842249
|
[45] |
K. Sarda, A. Yerudkar, and C. D. Vecchio, “Missing data imputation for real time-series data in a steel industry using generative adversarial networks,” in Proc. Ann. Conf. IEEE Industrial Electronics Society, 2021, pp. 1–6.
|
[46] |
X. Xiao, Y. Zhang, S. Yang, and X. Kong, “Efficient missing counts imputation of a bike-sharing system by generative adversarial network,” IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 8, pp. 13443–13451, 2022. doi: 10.1109/TITS.2021.3124409
|
[47] |
Y. Chen, Y. Lv, and F.-Y. Wang, “Traffic flow imputation using parallel data and generative adversarial networks,” IEEE Trans. Intelligent Transportation Systems, vol. 21, no. 4, pp. 1624–1630, 2020. doi: 10.1109/TITS.2019.2910295
|
[48] |
J. Chen, K. Wu, Y. Yu, and L. Linbo, “CDP-GAN: Near-infrared and visible image fusion via color distribution preserved GAN,” IEEE/CAA J. Autom. Sinica, vol. 9, p. 1698, 2022. doi: 10.1109/JAS.2022.105818
|
[49] |
J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in Proc. Int. Conf. Machine Learning, 2015, pp. 2256–2265.
|
[50] |
Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” Advances in Neural Information Processing Systems, vol. 32, 2019.
|
[51] |
J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.
|
[52] |
Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave: A versatile diffusion model for audio synthesis,” arXiv preprint arXiv: 2009.09761, 2020.
|
[53] |
S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” arXiv preprint arXiv: 1803.01271, 2018.
|
[54] |
G. Guo, W. Yuan, J. Liu, Y. Lv, and W. Liu, “Traffic forecasting via dilated temporal convolution with peak-sensitive loss,” IEEE Intelligent Transportation Systems Magazine, vol. 15, no. 1, pp. 48–57, 2023. doi: 10.1109/MITS.2021.3119869
|
[55] |
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017.
|
[56] |
K. Liu, Z. Ye, H. Guo, D. Cao, L. Chen, and F.-Y. Wang, “Fiss GAN: A generative adversarial network for foggy image semantic segmentation,” IEEE/CAA J. Autom. Sinica, vol. 8, p. 1428, 2021. doi: 10.1109/JAS.2021.1004057
|
[57] |
H. Huang, G. Zhou, N. Liang, Q. Zhao, and S. Xie, “Diverse deep matrix factorization with hypergraph regularization for multiview data representation,” IEEE/CAA J. Autom. Sinica, 2022.
|
[58] |
A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, “HIPPO: Recurrent x memory with optimal polynomial projections,” Advances in Neural Information Processing Systems, vol. 33, pp. 1474–1487, 2020.
|
[59] |
Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven traffic forecasting,” arXiv preprint arXiv: 1707.01926, 2017.
|
[60] |
H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan, and C. Shahabi, “Big data and its technical challenges,” Communi. the ACM, vol. 57, no. 7, pp. 86–94, 2014. doi: 10.1145/2611567
|
[61] |
I. R. White, P. Royston, and A. M. Wood, “Multiple imputation using chained equations: Issues and guidance for practice,” Statistics in Medicine, vol. 30, no. 4, pp. 377–399, 2011. doi: 10.1002/sim.4067
|
[62] |
L. Ljung, “Prediction error estimation methods,” Circuits, Systems and Signal Processing, vol. 21, pp. 11–21, 2002. doi: 10.1007/BF01211648
|
[63] |
X. Miao, Y. Wu, J. Wang, Y. Gao, X. Mao, and J. Yin, “Generative semi-supervised learning for multivariate time series imputation,” in Proc. AAAI Conf. Artificial Intelligence, vol. 35, no. 10, 2021, pp. 8983–8991.
|
[64] |
K. Swanson, “Message passing neural networks for molecular property prediction,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, USA, 2019.
|