A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
B. Lu, Q. Miao, Y. Liu, T. Tamir, H. Zhao, X. Zhang, Y. Lv, and F.-Y. Wang, “A diffusion model for traffic data imputation,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 1–12, Mar. 2025.
Citation: B. Lu, Q. Miao, Y. Liu, T. Tamir, H. Zhao, X. Zhang, Y. Lv, and F.-Y. Wang, “A diffusion model for traffic data imputation,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 1–12, Mar. 2025.

A Diffusion Model for Traffic Data Imputation

Funds:  This work was partially supported by the National Natural Science Foundation of China (62271485), and the SDHS Science and Technology Project (HS2023B044)
More Information
  • Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems (ITS) in the real world. As a state-of-the-art generative model, the diffusion model has proven highly successful in image generation, speech generation, time series modelling etc. and now opens a new avenue for traffic data imputation. In this paper, we propose a conditional diffusion model, called the implicit-explicit diffusion model, for traffic data imputation. This model exploits both the implicit and explicit feature of the data simultaneously. More specifically, we design two types of feature extraction modules, one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series. This approach not only inherits the advantages of the diffusion model for estimating missing data, but also takes into account the multiscale correlation inherent in traffic data. To illustrate the performance of the model, extensive experiments are conducted on three real-world time series datasets using different missing rates. The experimental results demonstrate that the model improves imputation accuracy and generalization capability.

     

  • loading
  • [1]
    D. Xu, H. Peng, C. Wei, X. Shang, and H. Li, “Traffic state data imputation: An efficient generating method based on the graph aggregator,” IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 8, pp. 13084–13093, 2022. doi: 10.1109/TITS.2021.3119638
    [2]
    M. Kantardzic, “Data mining: Concepts, models, methods, and algorithms,” Technometrics, vol. 45, no. 3, p. 277, 2003.
    [3]
    Q. Miao, Y. Lv, M. Huang, X. Wang, and F.-Y. Wang, “Parallel learning: Overview and perspective for computational learning across syn2real and sim2real,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 603–631, 2023. doi: 10.1109/JAS.2023.123375
    [4]
    W. Zou, Y. Sun, Y. Zhou, Q. Lu, Y. Nie, T. Sun, and L. Peng, “Limited sensing and deep data mining: A new exploration of developing city-wide parking guidance systems,” IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 1, pp. 198–215, 2022. doi: 10.1109/MITS.2020.2970185
    [5]
    C. Zhao, Y. Lv, J. Jin, Y. Tian, J. Wang, and F.-Y. Wang, “Decast in transverse for parallel intelligent transportation systems and smart cities: Three decades and beyond,” IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 6, pp. 6–17, 2022. doi: 10.1109/MITS.2022.3199557
    [6]
    S. Feng, Z. Song, Z. Li, Y. Zhang, and L. Li, “Robust platoon control in mixed traffic flow based on tube model predictive control,” IEEE Trans. Intelligent Vehicles, vol. 6, no. 4, pp. 711–722, 2021. doi: 10.1109/TIV.2021.3060626
    [7]
    X. Ge, Q.-L. Han, X.-M. Zhang, and D. Ding, “Communication resource-efficient vehicle platooning control with various spacing policies,” IEEE/CAA J. Autom. Sinica, 2023.
    [8]
    J. Zhan, Z. Ma, and L. Zhang, “Data-driven modeling and distributed predictive control of mixed vehicle platoons,” IEEE Trans. Intelligent Vehicles, vol. 8, no. 1, pp. 572–582, 2023. doi: 10.1109/TIV.2022.3168591
    [9]
    J. Wang, J. Wang, and Q.-L. Han, “Receding-horizon trajectory planning for under-actuated autonomous vehicles based on collaborative neurodynamic optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 1909–1923, 2022. doi: 10.1109/JAS.2022.105524
    [10]
    V. G. Stepanyants and A. Y. Romanov, “A survey of integrated simulation environments for connected automated vehicles: Requirements, tools, and architecture,” IEEE Intelligent Transportation Systems Magazine, 2023.
    [11]
    A. T. Hudak, N. L. Crookston, J. S. Evans, D. E. Hall, and M. J. Falkowski, “Nearest neighbor imputation of species-level, plot-scale forest structure attributes from lidar data,” Remote Sensing of Environment, vol. 112, no. 5, pp. 2232–2245, 2008. doi: 10.1016/j.rse.2007.10.009
    [12]
    D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative matrix factorization for data representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1548–1560, 2011. doi: 10.1109/TPAMI.2010.231
    [13]
    J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing values in visual data,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 208–220, 2012.
    [14]
    X. Chen, M. Lei, N. Saunier, and L. Sun, “Low-rank autoregressive tensor completion for spatiotemporal traffic data imputation,” IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 8, pp. 12301–12310, 2021.
    [15]
    X. Chen, Z. He, and J. Wang, “Spatial-temporal traffic speed patterns discovery and incomplete data recovery via SVD-combined tensor decomposition,” Transportation Research Part C: Emerging Technologies, vol. 86, pp. 59–77, 2018. doi: 10.1016/j.trc.2017.10.023
    [16]
    T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2016, pp. 785–794.
    [17]
    S. Harford, F. Karim, and H. Darabi, “Generating adversarial samples on multivariate time series using variational autoencoders,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1523–1538, 2021. doi: 10.1109/JAS.2021.1004108
    [18]
    T. Lintonen and T. Räty, “Self-learning of multivariate time series using perceptually important points,” IEEE/CAA J. Autom. Sinica, vol. 6, p. 1318, 2019. doi: 10.1109/JAS.2019.1911777
    [19]
    J. Liu, F. Zheng, X. Liu, and G. Guo, “Dynamic traffic flow prediction based on long-short term memory framework with feature organization,” IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 6, pp. 221–236, 2022. doi: 10.1109/MITS.2021.3116156
    [20]
    Z. Li, Y. Li, and L. Li, “A comparison of detrending models and multiregime models for traffic flow prediction,” IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 4, pp. 34–44, 2014. doi: 10.1109/MITS.2014.2332591
    [21]
    I. Lana, J. Del Ser, M. Velez, and E. I. Vlahogianni, “Road traffic forecasting: Recent advances and new challenges,” IEEE Intelligent Transportation Systems Magazine, vol. 10, no. 2, pp. 93–109, 2018. doi: 10.1109/MITS.2018.2806634
    [22]
    S. Choi, H. Shon, and K. Huh, “Interpretable vehicle speed estimation based on dual attention network for 4WD off-road vehicles,” IEEE Trans. Intelligent Vehicles, 2023.
    [23]
    Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction with big data: A deep learning approach,” IEEE Trans. Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.
    [24]
    Y. Duan, Y. Lv, Y.-L. Liu, and F.-Y. Wang, “An efficient realization of deep learning for traffic data imputation,” Transportation Research Part C: Emerging Technologies, vol. 72, pp. 168–181, 2016. doi: 10.1016/j.trc.2016.09.015
    [25]
    J. Xi, F. Zhu, P. Ye, Y. Lv, H. Tang, and F.-Y. Wang, “HMDRL: Hierarchical mixed deep reinforcement learning to balance vehicle supply and demand,” IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 11, pp. 21861–21872, 2022. doi: 10.1109/TITS.2022.3191752
    [26]
    J. Xi, F. Zhu, Y. Chen, Y. Lv, C. Tan, and F. Wang, “DDRL: A decentralized deep reinforcement learning method for vehicle repositioning,” in Proc. IEEE Int. Intelligent Transportation Systems Conf., 2021, pp. 3984–3989.
    [27]
    J. Pan, C. Li, Y. Tang, W. Li, and X. Li, “Energy consumption prediction of a CNC machining process with incomplete data,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 987–1000, 2021. doi: 10.1109/JAS.2021.1003970
    [28]
    W. Du, B. Li, J. Chen, Y. Lv, and Y. Li, “A spatiotemporal hybrid model for airspace complexity prediction,” IEEE Intelligent Transportation Systems Magazine, vol. 15, no. 2, pp. 217–224, 2023. doi: 10.1109/MITS.2022.3204099
    [29]
    X. Jiang, X. Kong, and Z. Ge, “Augmented industrial data-driven modeling under the curse of dimensionality,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1445–1461, 2023. doi: 10.1109/JAS.2023.123396
    [30]
    J. Yoon, W. R. Zame, and M. van der Schaar, “Estimating missing data in temporal data streams using multi-directional recurrent neural networks,” IEEE Trans. Biomedical Engineering, vol. 66, no. 5, pp. 1477–1490, 2019. doi: 10.1109/TBME.2018.2874712
    [31]
    X. Yao, Y. Gao, D. Zhu, E. Manley, J. Wang, and Y. Liu, “Spatial origindestination flow imputation using graph convolutional networks,” IEEE Trans. Intelligent Transportation Systems, vol. 22, no. 12, pp. 7474–7484, 2021. doi: 10.1109/TITS.2020.3003310
    [32]
    Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep spatial-temporal graph modeling,” arXiv preprint arXiv: 1906.00121, 2019.
    [33]
    Y. Liu, R. Yu, S. Zheng, E. Zhan, and Y. Yue, “NAOMI: Nonautoregressive multiresolution sequence imputation,” Advances in Neural Information Processing Systems, vol. 32, 2019.
    [34]
    M. Morsali, E. Frisk, and J. Åslund, “Spatio-temporal planning in ˚ multi-vehicle scenarios for autonomous vehicle using support vector machines,” IEEE Trans. Intelligent Vehicles, vol. 6, no. 4, pp. 611–621, 2021. doi: 10.1109/TIV.2020.3042087
    [35]
    W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “BRITS: Bidirectional recurrent imputation for time series,” Advances in Neural Information Processing Systems, vol. 31, 2018.
    [36]
    Q. Suo, W. Zhong, G. Xun, J. Sun, C. Chen, and A. Zhang, “GLIMA: Global and local time series imputation with multi-directional attention learning,” in Proc. IEEE Int. Conf. Big Data, 2020, pp. 798–807.
    [37]
    Z. Wei, H. Zhao, Z. Li, X. Bu, Y. Chen, X. Zhang, Y. Lv, and F.-Y. Wang, “STGSA: A novel spatial-temporal graph synchronous aggregation model for traffic prediction,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 226–238, 2023. doi: 10.1109/JAS.2023.123033
    [38]
    W. Du, D. Côté, and Y. Liu, “SAITS: Self-attention-based imputation x for time series,” Expert Systems With Applications, vol. 219, p. 119619, 2023. doi: 10.1016/j.eswa.2023.119619
    [39]
    Y. Liu, B. Tian, Y. Lv, L. Li, and F.-Y. Wang, “Point cloud classification using content-based transformer via clustering in feature space,” IEEE/CAA J. Autom. Sinica, vol. 10, p. 1, 2023. doi: 10.1109/JAS.2023.123003
    [40]
    Y. Tashiro, J. Song, Y. Song, and S. Ermon, “CSDI: Conditional scorebased diffusion models for probabilistic time series imputation,” Advances in Neural Information Processing Systems, vol. 34, pp. 24804–24816, 2021.
    [41]
    J. M. L. Alcaraz and N. Strodthoff, “Diffusion-based time series imputation and forecasting with structured state space models,” arXiv preprint arXiv: 2208.09399, 2022.
    [42]
    I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communi. the ACM, vol. 63, no. 11, pp. 139–144, 2020. doi: 10.1145/3422622
    [43]
    Y. Luo, X. Cai, Y. Zhang, J. Xu, et al., “Multivariate time series imputation with generative adversarial networks,” Advances in Neural Information Processing Systems, vol. 31, 2018.
    [44]
    Y. Lv, Y. Chen, L. Li, and F.-Y. Wang, “Generative adversarial networks for parallel transportation systems,” IEEE Intelligent Transportation Systems Magazine, vol. 10, no. 3, pp. 4–10, 2018. doi: 10.1109/MITS.2018.2842249
    [45]
    K. Sarda, A. Yerudkar, and C. D. Vecchio, “Missing data imputation for real time-series data in a steel industry using generative adversarial networks,” in Proc. Ann. Conf. IEEE Industrial Electronics Society, 2021, pp. 1–6.
    [46]
    X. Xiao, Y. Zhang, S. Yang, and X. Kong, “Efficient missing counts imputation of a bike-sharing system by generative adversarial network,” IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 8, pp. 13443–13451, 2022. doi: 10.1109/TITS.2021.3124409
    [47]
    Y. Chen, Y. Lv, and F.-Y. Wang, “Traffic flow imputation using parallel data and generative adversarial networks,” IEEE Trans. Intelligent Transportation Systems, vol. 21, no. 4, pp. 1624–1630, 2020. doi: 10.1109/TITS.2019.2910295
    [48]
    J. Chen, K. Wu, Y. Yu, and L. Linbo, “CDP-GAN: Near-infrared and visible image fusion via color distribution preserved GAN,” IEEE/CAA J. Autom. Sinica, vol. 9, p. 1698, 2022. doi: 10.1109/JAS.2022.105818
    [49]
    J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in Proc. Int. Conf. Machine Learning, 2015, pp. 2256–2265.
    [50]
    Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” Advances in Neural Information Processing Systems, vol. 32, 2019.
    [51]
    J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.
    [52]
    Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave: A versatile diffusion model for audio synthesis,” arXiv preprint arXiv: 2009.09761, 2020.
    [53]
    S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” arXiv preprint arXiv: 1803.01271, 2018.
    [54]
    G. Guo, W. Yuan, J. Liu, Y. Lv, and W. Liu, “Traffic forecasting via dilated temporal convolution with peak-sensitive loss,” IEEE Intelligent Transportation Systems Magazine, vol. 15, no. 1, pp. 48–57, 2023. doi: 10.1109/MITS.2021.3119869
    [55]
    A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017.
    [56]
    K. Liu, Z. Ye, H. Guo, D. Cao, L. Chen, and F.-Y. Wang, “Fiss GAN: A generative adversarial network for foggy image semantic segmentation,” IEEE/CAA J. Autom. Sinica, vol. 8, p. 1428, 2021. doi: 10.1109/JAS.2021.1004057
    [57]
    H. Huang, G. Zhou, N. Liang, Q. Zhao, and S. Xie, “Diverse deep matrix factorization with hypergraph regularization for multiview data representation,” IEEE/CAA J. Autom. Sinica, 2022.
    [58]
    A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, “HIPPO: Recurrent x memory with optimal polynomial projections,” Advances in Neural Information Processing Systems, vol. 33, pp. 1474–1487, 2020.
    [59]
    Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven traffic forecasting,” arXiv preprint arXiv: 1707.01926, 2017.
    [60]
    H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan, and C. Shahabi, “Big data and its technical challenges,” Communi. the ACM, vol. 57, no. 7, pp. 86–94, 2014. doi: 10.1145/2611567
    [61]
    I. R. White, P. Royston, and A. M. Wood, “Multiple imputation using chained equations: Issues and guidance for practice,” Statistics in Medicine, vol. 30, no. 4, pp. 377–399, 2011. doi: 10.1002/sim.4067
    [62]
    L. Ljung, “Prediction error estimation methods,” Circuits, Systems and Signal Processing, vol. 21, pp. 11–21, 2002. doi: 10.1007/BF01211648
    [63]
    X. Miao, Y. Wu, J. Wang, Y. Gao, X. Mao, and J. Yin, “Generative semi-supervised learning for multivariate time series imputation,” in Proc. AAAI Conf. Artificial Intelligence, vol. 35, no. 10, 2021, pp. 8983–8991.
    [64]
    K. Swanson, “Message passing neural networks for molecular property prediction,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, USA, 2019.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article Metrics

    Article views (17) PDF downloads(7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return