IEEE/CAA Journal of Automatica Sinica
Citation: | Hua Chen and YangQuan Chen, "Fractional-order Generalized Principle of Self-support (FOGPSS) in Control System Design," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 430-441, Oct. 2016. |
[1] |
Novaković Z R. The Principle of Self-Support in Control Systems. Amsterdam, New York:Elsevier Science Ltd., 1992.
|
[2] |
Alley R B. The Two-Mile Time Machine:Ice Cores, Abrupt Climate Change, and Our Future. Princeton:Princeton University Press, 2014.
|
[3] |
Novaković Z R. The principle of self-support in robot control synthesis. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(1):206-220 doi: 10.1109/21.101150
|
[4] |
Tan K K, Dou H F, Chen Y Q, Lee T H. High precision linear motor control via relay-tuning and iterative learning based on zero-phase filtering. IEEE Transactions on Control Systems Technology, 2001, 9(2):244-253 doi: 10.1109/87.911376
|
[5] |
Novaković Z R. Robust tracking control for robots with bounded input. Journal of Dynamic Systems, Measurement, and Control, 1992, 114(2):315-319 doi: 10.1115/1.2896530
|
[6] |
Novaković Z R. The principle of self-support:a new approach to kinematic control of robots. In:Proceedings of the 5th International Conference on Advanced Robotics, 1991. Robots in Unstructured Environments. Pisa, Italy:IEEE, 1991. 1444-1447
|
[7] |
Ulu N G, Ulu E, Cakmakci M. Learning based cross-coupled control for multi-axis high precision positioning systems. In:Proceedings of the 5th ASME Annual Dynamic Systems and Control Conference Joint with the 11th JSME Motion and Vibration Conference. Florida, USA:ASME, 2012. 535-541
|
[8] |
Özdemir N, Avci D. Optimal control of a linear time-invariant space-time fractional diffusion process. Journal of Vibration and Control, 2014, 20(3):370-380 doi: 10.1177/1077546312464678
|
[9] |
Zhao X, Yang H T, He Y Q. Identification of constitutive parameters for fractional viscoelasticity. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1):311-322 doi: 10.1016/j.cnsns.2013.05.019
|
[10] |
Ge Z M, Jhuang W R. Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos, Solitons and Fractals, 2007, 33(1):270-289 doi: 10.1016/j.chaos.2005.12.040
|
[11] |
Chen H, Chen W, Zhang B W, Cao H T. Robust synchronization of incommensurate fractional-order chaotic systems via second-order sliding mode technique. Journal of Applied Mathematics, 2013, 2013:Article ID 321253
|
[12] |
Jesus I S, Tenreiro Machado J A. Development of fractional order capacitors based on electrolyte processes. Nonlinear Dynamics, 2009, 56(1-2):45-55 doi: 10.1007/s11071-008-9377-8
|
[13] |
Müller S, K ästner M, Brummund J, Ulbricht V. A nonlinear fractional viscoelastic material model for polymers. Computational Materials Science, 2011, 50(10):2938-2949 doi: 10.1016/j.commatsci.2011.05.011
|
[14] |
Rivero M, Trujillo J J, Vázquez L, Pilar Velasco M. Fractional dynamics of populations. Applied Mathematics and Computation, 2011, 218(3):1089-1095 doi: 10.1016/j.amc.2011.03.017
|
[15] |
Chen Y Q, Moore K L. Discretization schemes for fractional-order differentiators and integrators. IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications, 2002, 49(3):363-367 doi: 10.1109/81.989172
|
[16] |
Corradini M L, Giambó R, Pettinari S. On the adoption of a fractional-order sliding surface for the robust control of integer-order LTI plants. Automatica, 2015, 51:364-371 doi: 10.1016/j.automatica.2014.10.075
|
[17] |
Pisano A, Rapaić M, Jeličić Z, Usai E. Nonlinear fractional PI control of a class of fractional-order systems. In:Proceedings of the 2012 IFAC Conference on Advances in PID Control. Brescia, Italy, 2012. 637-642
|
[18] |
Monje C A, Vinagre B M, Feliu V, Chen Y Q. Tuning and autotuning of fractional order controllers for industry applications. Control Engineering Practice, 2008, 16(7):798-812 doi: 10.1016/j.conengprac.2007.08.006
|
[19] |
Monje C A, Chen Y Q, Vinagre B M, Xue D, Feliu-Batlle V. FractionalOrder Systems and Controls. London:Springer, 2010.
|
[20] |
Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam, The Netherlands:Elsevier, 2006.
|
[21] |
Podlubny I. Fractional Differential Equations. New York:Academic Press, 1999.
|
[22] |
Li C P, Deng W H. Remarks on fractional derivatives. Applied Mathematics and Computation, 2007, 187(2):777-784 doi: 10.1016/j.amc.2006.08.163
|
[23] |
Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives:Theory and Applications. Switzerland:Gordon and Breach Science Publishers, 1993.
|
[24] |
Li C P, Zeng F H. Numerical Methods for Fractional Calculus. Boca Raton, FL:Chapman and Hall/CRC, 2015.
|
[25] |
Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York:Wiley, 1993.
|
[26] |
Oldham K B, Spanier J. The Fractional Calculus. New York:Academic Press, 1974.
|
[27] |
Li C P, Dao X H, Guo P. Fractional derivatives in complex planes. Nonlinear Analysis:Theory, Methods, and Applications, 2009, 71(5-6):1857-1869 doi: 10.1016/j.na.2009.01.021
|
[28] |
Li C P, Qian D L, Chen Y Q. On Riemann-Liouville and Caputo derivatives. Discrete Dynamics in Nature and Society, 2011, 2011:Article ID 562494
|
[29] |
Li C P, Zhao Z G. Introduction to fractional integrability and differentiability. The European Physical Journal Special Topics, 2011, 193(1):5-26 doi: 10.1140/epjst/e2011-01378-2
|
[30] |
Li C P, Zhang F R, Kurths J, Zeng F H. Equivalent system for a multiple-rational-order fractional differential system. Philosophical Transactions of the Royal Society A:Mathematical, Physical, and Engineering Sciences, 2013, 371(1990):20120156 doi: 10.1098/rsta.2012.0156
|
[31] |
Li Y, Chen Y Q, Podlubny I. Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized MittagLeffler stability. Computers and Mathematics with Applications, 2010, 59(5):1810-1821 doi: 10.1016/j.camwa.2009.08.019
|
[32] |
Li Y, Chen Y Q, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45(8):1965-1969 doi: 10.1016/j.automatica.2009.04.003
|
[33] |
Ahn H S, Chen Y Q. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica, 2008, 44(11):2985-2988 doi: 10.1016/j.automatica.2008.07.003
|
[34] |
Ahn H S, Chen Y Q, Podlubny I. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Applied Mathematics and Computation, 2007, 187(1):27-34 doi: 10.1016/j.amc.2006.08.099
|
[35] |
Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α:the 0 << α << 1 case. IEEE Transactions on Automatic Control, 2010, 55(1):152-158 doi: 10.1109/TAC.2009.2033738
|
[36] |
Chen Y Q, Moore K L. Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dynamics, 2002, 29(1-4):191-200 http://cn.bing.com/academic/profile?id=213140877&encoded=0&v=paper_preview&mkt=zh-cn
|
[37] |
Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):2951-2957 doi: 10.1016/j.cnsns.2014.01.022
|
[38] |
Podlubny I. Fractional Differential Equations:an Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. New York:Academic Press, 1999.
|
[39] |
Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 2002, 29(1-4):3-22 http://cn.bing.com/academic/profile?id=1509146820&encoded=0&v=paper_preview&mkt=zh-cn
|
[40] |
Ilchmann A, Ryan E P. Universal λ-tracking for nonlinearly-perturbed systems in the presence of noise. Automatica, 1994, 30(2):337-346 doi: 10.1016/0005-1098(94)90035-3
|
[41] |
Allgöwer F, Ilchmann A. Multivariable adaptive λ-tracking for nonlinear chemical processes. In:Proceedings of the 3rd European Control Conference. Rome, Italy, 1995. 1645-1651
|
[42] |
Allgöwer F, Ashman J, Ilchmann A. High-gain λ-tracking for nonlinear systems. Automatica, 1997, 33(5):881-888 doi: 10.1016/S0005-1098(96)00226-9
|
[43] |
Ilchmann A, Logemann H. Adaptive λ-tracking for a class of infinitedimensional systems. Systems and Control Letters, 1998, 34(1-2):11-21 doi: 10.1016/S0167-6911(97)00133-3
|
[44] |
Ilchmann A, Townley S. Adaptive high-gain λ-tracking with variable sampling rate. Systems and Control Letters, 1999, 36(4):285-293 doi: 10.1016/S0167-6911(98)00101-7
|
[45] |
Ilchmann A, Thuto M, Townley S. Input constrained adaptive tracking with applications to exothermic chemical reaction models. SIAM Journal on Control and Optimization, 2004, 43(1):154-173 doi: 10.1137/S0363012901391081
|
[46] |
Ilchmann A, Thuto M, Townley S. λ-tracking for exothermic chemical reactions with saturating inputs. In:Proceedings of the 2001 European Control Conference (ECC). Porto, Portugal:IEEE, 2001. 1928-1933
|
[47] |
Ilchmann A, Trenn S. Input constrained funnel control with applications to chemical reactor models. Systems and Control Letters, 2004, 53(5):361-375 doi: 10.1016/j.sysconle.2004.05.014
|
[48] |
Ilchmann A, Townley S, Thuto M. Adaptive sampled-data tracking for input-constrained exothermic chemical reaction models. Systems and Control Letters, 2005, 54(12):1149-1161 doi: 10.1016/j.sysconle.2005.04.004
|
[49] |
Shinskey F G. Process-Control Systems. New York:McGraw-Hill Book Company, 1967.
|
[50] |
Zhong Q C. Robust Control of Time-Delay Systems. London:Springer, 2006.
|
[51] |
Niculescu S L. Delay Effects on Stability:A Robust Control Approach. London:Springer, 2001.
|
[52] |
Yi Y, Guo L, Wang H. Adaptive statistic tracking control based on twostep neural networks with time delays. IEEE Transactions on Neural Networks, 2009, 20(3):420-429 doi: 10.1109/TNN.2008.2008329
|
[53] |
Fridman E. A refined input delay approach to sampled-data control. Automatica, 2010, 46(2):421-427 doi: 10.1016/j.automatica.2009.11.017
|
[54] |
Wang M, Chen B, Liu X P, Shi P. Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems. Fuzzy Sets and Systems, 2008, 159(8):949-967 doi: 10.1016/j.fss.2007.12.022
|
[55] |
Wu H S. Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays. IEEE Transactions on Automatic Control, 2004, 49(4):611-616 doi: 10.1109/TAC.2004.825634
|
[56] |
Wang M, Ge S S, Hong K S. Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays. IEEE Transactions on Neural Networks, 2010, 21(11):1804-1816 doi: 10.1109/TNN.2010.2073719
|
[57] |
Tseng C S. Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay. IEEE Transactions on Fuzzy Systems, 2006, 14(1):58-70 doi: 10.1109/TFUZZ.2005.861609
|
[58] |
Zhang H G, Song R Z, Wei Q L, Zhang T Y. Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming. IEEE Transactions on Neural Networks, 2011, 22(12):1851-1862 doi: 10.1109/TNN.2011.2172628
|
[59] |
Li Q K, Zhao J, Dimirovski G M, Liu X J. Tracking control for switched linear systems with time-delay:a state-dependent switching method. Asian Journal of Control, 2009, 11(5):517-526 doi: 10.1002/asjc.v11:5
|
[60] |
Cho G R, Chang P H, Park S H, Jin M L. Robust tracking under nonlinear friction using time-delay control with internal model. IEEE Transactions on Control Systems Technology, 2009, 17(6):1406-1414 doi: 10.1109/TCST.2008.2007650
|
[61] |
Wang L X. Adaptive Fuzzy Systems and Control:Design and Stability Analysis. Englewood Cliffs, NJ:Prentice-Hall, 1994.
|
[62] |
Boulkroune A, Tadjine M, M'Saad M, Farza M. How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems. Fuzzy Sets and Systems, 2008, 159(8):926-948 doi: 10.1016/j.fss.2007.08.015
|
[63] |
Chen H, Wang C L, Yang L, Zhang D K. Semiglobal stabilization for nonholonomic mobile robots based on dynamic feedback with inputs saturation. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(4):041006 doi: 10.1115/1.4006076
|
[64] |
Chen H. Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation. International Journal of Control, Automation, and Systems, 2014, 12(6):1216-1224 doi: 10.1007/s12555-013-0492-z
|
[65] |
Chen H, Wang C L, Zhang B W, Zhang D K. Saturated tracking control for nonholonomic mobile robots with dynamic feedback. Transactions of the Institute of Measurement and Control, 2013, 35(2):105-116 doi: 10.1177/0142331211431719
|
[66] |
Lin Z L, Saberi A. Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedbacks. Systems and Control Letters, 1995, 24(2):125-132 doi: 10.1016/0167-6911(94)00020-V
|
[67] |
Boškovic J D, Li S M, Mehra R K. Robust adaptive variable structure control of spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2001, 24(1):14-22 doi: 10.2514/2.4704
|
[68] |
Chen H, Wang C L, Liang Z Y, Zhang D K, Zhang H J. Robust practical stabilization of nonholonomic mobile robots based on visual servoing feedback with inputs saturation. Asian Journal of Control, 2014, 16(3):692-702 doi: 10.1002/asjc.2014.16.issue-3
|
[69] |
Chen H, Ding S H, Chen X, Wang L H, Zhu C P, Chen W. Global finitetime stabilization for nonholonomic mobile robots based on visual servoing. International Journal of Advanced Robotic Systems, 2014, 11:1-13 http://cn.bing.com/academic/profile?id=1976149141&encoded=0&v=paper_preview&mkt=zh-cn
|
[70] |
Li B J, Chen H, Chen J F. Global finite-time stabilization for a class of nonholonomic chained system with input saturation. Journal of Information and Computational Science, 2014, 11(3):883-890 doi: 10.12733/issn.1548-7741
|
[71] |
Chen Hua, Wang Chao-Li, Yang Fang, Xu Wei-Dong. Finite-time saturated stabilization of nonholonomic mobile robots based on visual servoing. Control Theory and Applications, 2012, 29(6):817-823(in Chinese) http://cn.bing.com/academic/profile?id=2383042891&encoded=0&v=paper_preview&mkt=zh-cn
|
[72] |
Chen H, Chen J F, Lei Y, Chen W X, Wang Y W. Further results of semiglobal saturated stabilization for nonholonomic mobile robots. In:Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC). Changsha, China:IEEE, 2014. 4545-4550
|
[73] |
Chen H, Zhang J B. Semiglobal saturated practical stabilization for nonholonomic mobile robots with uncertain parameters and angle measurement disturbance. In:Proceedings of the 25th Chinese Control and Decision Conference (CCDC). Guiyang, China:IEEE, 2013. 3731-3736
|
[74] |
Su H S, Chen M Z Q, Wang X F, Lam J. Semiglobal observer-based leader-following consensus with input saturation. IEEE Transactions on Industrial Electronics, 2014, 61(6):2842-2850 doi: 10.1109/TIE.2013.2275976
|
[75] |
Mobayen S. Robust tracking controller for multivariable delayed systems with input saturation via composite nonlinear feedback. Nonlinear Dynamics, 2014, 76(1):827-838 doi: 10.1007/s11071-013-1172-5
|
[76] |
Wang X, Saberi A, Stoorvogel A A. Stabilization of discrete-time linear systems subject to input saturation and multiple unknown constant delays. IEEE Transactions on Automatic Control, 2014, 59(6):1667-1672 doi: 10.1109/TAC.2013.2294615
|
[77] |
Fischer N, Dani A, Sharma N, Dixon W E. Saturated control of an uncertain nonlinear system with input delay. Automatica, 2013, 49(6):1741-1747 doi: 10.1016/j.automatica.2013.02.013
|
[78] |
Lin Z L, Saberi A. Semi-global exponential stabilization of linear systems subject to input saturation via linear feedbacks. Systems and Control Letters, 1993, 21(3):225-239 doi: 10.1016/0167-6911(93)90033-3
|
[79] |
Yang T, Meng Z Y, Dimarogonas D V, Johansson K H. Global consensus for discrete-time multi-agent systems with input saturation constraints. Automatica, 2014, 50(2):499-506 doi: 10.1016/j.automatica.2013.11.008
|
[80] |
Lim Y H, Oh K K, Ahn H S. Stability and stabilization of fractionalorder linear systems subject to input saturation. IEEE Transactions on Automatic Control, 2013, 58(4):1062-1067 doi: 10.1109/TAC.2012.2218064
|
[81] |
Ortega R, Spong M W. Adaptive motion control of rigid robots:a tutorial. Automatica, 1989, 25(6):877-888 doi: 10.1016/0005-1098(89)90054-X
|
[82] |
Nicosia S, Tomei P. Robot control by using only joint position measurements. IEEE Transactions on Automatic Control, 1990, 35(9):1058-1061 doi: 10.1109/9.58537
|
[83] |
Corless M. Control of uncertain nonlinear systems. Journal of Dynamic Systems, Measurement, and Control, 1993, 115(2B):362-372 doi: 10.1115/1.2899076
|
[84] |
Utkin V I. Sliding Modes and Their Application in Variable Structure Systems. Moscow:MIR Publishers, 1978.
|
[85] |
Slotine J J, Li W P. Applied Nonlinear Control. Englewood Cliffs, NJ:Prentice Hall, 1991.
|
[86] |
Zhang F, Dawson D M, de Queiroz M S, Dixon W E. Global adaptive output feedback tracking control of robot manipulators. IEEE Transactions on Automatic Control, 2000, 45(6):1203-1208 doi: 10.1109/9.863607
|
[87] |
Hsu S H, Fu L C. A fully adaptive decentralized control of robot manipulators. Automatica, 2006, 42(10):1761-1767 doi: 10.1016/j.automatica.2006.05.012
|
[88] |
Galicki M. An adaptive regulator of robotic manipulators in the task space. IEEE Transactions on Automatic Control, 2008, 53(4):1058-1062 doi: 10.1109/TAC.2008.921022
|
[89] |
Galicki M. Control of mobile manipulators in a task space. IEEE Transactions on Automatic Control, 2012, 57(2):2962-2967 http://cn.bing.com/academic/profile?id=2069282182&encoded=0&v=paper_preview&mkt=zh-cn
|
[90] |
Galicki M. Finite-time control of robotic manipulators. Automatica, 2015, 51:49-54 doi: 10.1016/j.automatica.2014.10.089
|
[91] |
Ijspeert A J, Nakanishi J, Schaal S. Movement imitation with nonlinear dynamical systems in humanoid robots. In:Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington, DC:IEEE, 2002. 1398-1403
|
[92] |
Katić D, Vukobratović M. Survey of intelligent control techniques for humanoid robots. Journal of Intelligent and Robotic Systems, 2003, 37(2):117-141 doi: 10.1023/A:1024172417914
|
[93] |
Furuta T, Tawara T, Okumura Y, Shimizu M, Tomiyama K. Design and construction of a series of compact humanoid robots and development of biped walk control strategies. Robotics and Autonomous Systems, 2001, 37(2-3):81-100 doi: 10.1016/S0921-8890(01)00151-8
|
[94] |
Goswami A, Yun S, Nagarajan U, Lee S H, Yin K K, Kalyanakrishnan S. Direction-changing fall control of humanoid robots:theory and experiments. Autonomous Robots, 2014, 36(3):199-223 doi: 10.1007/s10514-013-9343-2
|
[95] |
Eaton M. Introduction. Evolutionary Humanoid Robotics. Berlin Heidelberg:Springer, 2015. 1-7
|
[96] |
Yuh J. Design and control of autonomous underwater robots:a survey. Autonomous Robots, 2000, 8(1):7-24 http://cn.bing.com/academic/profile?id=1595895163&encoded=0&v=paper_preview&mkt=zh-cn
|
[97] |
Antonelli G. Underwater Robots (Third edition). Switzerland:Springer, 2014.
|
[98] |
Choi S K, Yuh J. Experimental study on a learning control system with bound estimation for underwater robots. Autonomous Robots, 1996, 3(2-3):187-194 doi: 10.1007/BF00141154
|
[99] |
Chu W S, Lee K T, Song S H, Han M W, Lee J Y, Kim H S, Kim M S, Park Y J, Cho K J, Ahn S H. Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing, 2012, 13(7):1281-1292 doi: 10.1007/s12541-012-0171-7
|
[100] |
Krieg M, Mohseni K. Thrust characterization of a bioinspired vortex ring thruster for locomotion of underwater robots. IEEE Journal of Oceanic Engineering, 2008, 33(2):123-132 doi: 10.1109/JOE.2008.920171
|
[101] |
Taylor T. A genetic regulatory network-inspired real-time controller for a group of underwater robots. In:Proceedings of the 8th Conference on Intelligent Autonomous Systems (IAS-8). Amsterdam, 2004. 403-412
|
[102] |
Jaulin L. A nonlinear set membership approach for the localization and map building of underwater robots. IEEE Transactions on Robotics, 2009, 25(1):88-98 doi: 10.1109/TRO.2008.2010358
|
[103] |
Tarn T J, Shoults G A, Yang S P. A dynamic model of an underwater vehicle with a robotic manipulator using Kane's method. Underwater Robots. US:Springer, 1996. 195-209
|
[104] |
Nakamura Y, Mukherjee R. Nonholonomic path planning of space robots via a bidirectional approach. IEEE Transactions on Robotics and Automation, 1991, 7(4):500-514 doi: 10.1109/70.86080
|
[105] |
Wee L B, Walker M W. On the dynamics of contact between space robots and configuration control for impact minimization. IEEE Transactions on Robotics and Automation, 1993, 9(5):581-591 doi: 10.1109/70.258051
|
[106] |
Ulrich S, Sasiadek J Z. Extended Kalman filtering for flexible joint space robot control. In:Proceedings of the 2011 American Control Conference. San Francisco, CA:IEEE, 2011. 1021-1026
|
[107] |
Campion G, Bastin G, D'Andrea-Novel B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 1996, 12(1):47-62 doi: 10.1109/70.481750
|
[108] |
Dixon W E, Dawson D M, Zergeroglu E, Behal A. Nonlinear Control of Wheeled Mobile Robots. London:Springer-Verlag, 2001.
|
[109] |
Dong W J. Tracking control of multiple-wheeled mobile robots with limited information of a desired trajectory. IEEE Transactions on Robotics, 2012, 28(1):262-268 doi: 10.1109/TRO.2011.2166436
|
[110] |
Chwa D. Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances. IEEE Transactions on Fuzzy Systems, 2012, 20(3):587-593 doi: 10.1109/TFUZZ.2011.2176738
|
[111] |
Siegwart R, Nourbakhsh I R, Scaramuzza D. Introduction to Autonomous Mobile Robots (Second edition). Cambridge:MIT Press, 2011.
|
[112] |
Blažič S. A novel trajectory-tracking control law for wheeled mobile robots. Robotics and Autonomous Systems, 2011, 59(11):1001-1007 doi: 10.1016/j.robot.2011.06.005
|
[113] |
Wei S M, Uthaichana K, Žefran M, DeCarlo R. Hybrid model predictive control for the stabilization of wheeled mobile robots subject to wheel slippage. IEEE Transactions on Control Systems Technology, 2013, 21(6):2181-2193 doi: 10.1109/TCST.2012.2227964
|
[114] |
Roman H T, Pellegrino B A, Sigrist W R. Pipe crawling inspection robots:an overview. IEEE Transactions on Energy Conversion, 1993, 8(3):576-583 doi: 10.1109/60.257076
|
[115] |
Roh S, Choi H R. Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Transactions on Robotics, 2005, 21(1):1-17 doi: 10.1109/TRO.2004.838000
|
[116] |
Park J, Hyun D, Cho W H, Kim T H, Yang H S. Normal-force control for an in-pipe robot according to the inclination of pipelines. IEEE Transactions on Industrial Electronics, 2011, 58(12):5304-5310 doi: 10.1109/TIE.2010.2095392
|
[117] |
Murray R M, Walsh G, Sastry S S. Stabilization and tracking for nonholonomic control systems using time-varying state feedback. In:Proceedings of the 2nd IFAC Symposium on Nonlinear Control Systems Design 1992. Bordeaux, France:IFAC, 1993. 109-114
|
[118] |
Huang J S, Wen C Y, Wang W, Jiang Z P. Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance. Systems and Control Letters, 2013, 62(3):234-241 doi: 10.1016/j.sysconle.2012.11.020
|
[119] |
Chen H, Zhang J B, Chen B Y, Li B J. Global practical stabilization for non-holonomic mobile robots with uncalibrated visual parameters by using a switching controller. IMA Journal of Mathematical Control and Information, 2013, 30(4):543-557 doi: 10.1093/imamci/dns044
|
[120] |
Chen H, Wang C L, Zhang D K, Yang F. Finite-time robust stabilization of dynamic feedback nonholonomic mobile robots based on visual servoing with input saturation. In:Proceedings of the 10th World Congress on Intelligent Control and Automation (WCICA). Beijing, China:IEEE, 2012. 3686-3691
|
[121] |
Brockett R W. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory. Boston:Birkhauser, 1983. 181-208
|
[122] |
Sordalen O J, Egeland O. Exponential stabilization of nonholonomic chained systems. IEEE Transactions on Automatic Control, 1995, 40(1):35-49 doi: 10.1109/9.362901
|
[123] |
Prieur C, Astolfi A. Robust stabilization of chained systems via hybrid control. IEEE Transactions on Automatic Control, 2003, 48(10):1768-1772 doi: 10.1109/TAC.2003.817909
|
[124] |
Hussein I I, Bloch A M. Optimal control of underactuated nonholonomic mechanical systems. IEEE Transactions on Automatic Control, 2008, 53(3):668-682 doi: 10.1109/TAC.2008.919853
|
[125] |
Qu Z, Wang J, Plaisted C E, Hull R A. Global-stabilizing near-optimal control design for nonholonomic chained systems. IEEE Transactions on Automatic Control, 2006, 51(9):1440-1456 doi: 10.1109/TAC.2006.880965
|
[126] |
Suruz Miah M, Gueaieb W. Optimal time-varying P-controller for a class of uncertain nonlinear systems. International Journal of Control, Automation and Systems, 2014, 12(4):722-73 doi: 10.1007/s12555-013-0234-2
|